
FRACTION 1 EXAMPLE

One Class

Multiple Objects

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Creating a simple four-function calculator performing simple arithmetic operations on fractions illustrates many concepts described in the previous sections.

FRACTIONS:
CLASSES AND OBJECTS

• Fractions are a good example of a class

• Two member variables – simple, but enough to be interesting

• Multiple ways of building them – interesting constructor functions

• Algorithmic operations – non-trivial member functions that use the variables

• I/O – simple but necessary

• Fractions are a good example of a multi-object program

• Even simple operations involve multiple objects: f1, f2, and f3 are fraction objects

• f3 = f1 + f2 translates to f3 = f1.add(f2);

Presenter Notes
Presentation Notes
Fractions are familiar to computer science students and have many characteristics, making them good examples of object-oriented programming. They're relatively simple, having just two member variables. Client programs can create them in various ways, illustrating different constructors. The arithmetic functions are non-trivial but small enough not to be burdensome. Their I/O operations are simple but can have some specific features.The fraction arithmetic operations also illustrate how multiple instances of a class interact. If f1, f2, and f3 are fraction objects, we can translate the fraction addition operation into a call to the C++ add function as illustrated.

REQUIREMENTS

• Default constructor to make an empty fraction: 0/1

• Conversion constructor to convert an integer to a fraction: 5 to 5/1

• A general constructor to make fraction from two integers: 2 & 3 to 2/3

• Improper fractions are okay, but constructors must reduce new fractions to
lowest terms

• Operations do not alter the original fractions

• Each operation creates a new fraction to denote its result

• The output displays the fraction as numerator / denominator: 2/3, 5/3, or 5/1

• The input reads the numerator and denominator one at a time

Presenter Notes
Presentation Notes
The fraction project begins when the customer provides the developer with the software's requirements. Requirements typically tell us what the software must do but not how. New programmers often feel like requirements restrict their creativity, and perhaps they do. When you create and market a software system, you can specify the requirements, but when creating a system for a customer, the customer determines the requirements.The fraction project requirements specify three constructors for creating fraction objects three ways, and they must reduce the fraction object to the lowest terms. Arithmetic operations must not alter the original fraction objects but create a new object representing the result. Finally, the requirements specify how a fraction must look when displayed and how they must be input into the program.

FRACTION CLASS

fraction

-numerator : int

+fraction(n : int = 0, d : int = 1)
-denominator : int

+add(f : fraction) : fraction
+sub(f : fraction) : fraction
+mult(f : fraction) : fraction
+div(f : fraction) : fraction
+print() : void
+read() : void

class fraction
{
 private:
 int numerator;
 int denominator;

 public:
 fraction(int n = 0, int d = 1);
 fraction add(fraction f2) const;
 fraction sub(fraction f2) const;
 fraction mult(fraction f2) const;
 fraction div(fraction f2) const;
 void print() const;
 void read();
};

Presenter Notes
Presentation Notes
Modern software systems are large and complex, so programmer teams create and manage them. We begin the example with the fraction UML class diagram. A class diagram helps each team member maintain compatibility with the code produced by the other members. Specifically, the diagrams help programmers keep the function names, parameters, and return types consistent – beginning with the class specification.A programmer translates the UML class diagram into a C++ class specification. The diagram attributes become the member variables, and the diagram operations become the member functions.

FRACTION CONSTRUCTOR

• Fraction f1(2, 3); 2/3

• Fraction f2(5); 5/1

• Fraction f3; 0/1

fraction(int n = 0, int d = 1)

 : numerator(n), denominator(d)

{

 int common = gcd(numerator, denominator);

 numerator /= common;

 denominator /= common;

}

Presenter Notes
Presentation Notes
The fraction class needs three constructors. The first constructor makes a fraction object from two integers; the second converts an integer into a fraction, and the last one creates an "empty" fraction. We can get the behavior of all three constructors by using default arguments.The initializer list initializes the member variables, the numerator and denominator, before the function body executes, so these variables are ready for use when the constructor calls the gcd function. The gcd function calculates the greatest common divisor of its arguments - the largest number that evenly divides both arguments. For example, the greatest common divisor of 10 and 15 is 5, so 10/15 reduces to 2/3.

FRACTION FORMULAS

• Addition:
𝑎𝑎
𝑏𝑏

+ 𝑐𝑐
𝑑𝑑

= 𝑎𝑎𝑑𝑑+𝑏𝑏𝑐𝑐
𝑏𝑏𝑑𝑑

• Subtraction:
𝑎𝑎
𝑏𝑏
− 𝑐𝑐

𝑑𝑑
= 𝑎𝑎𝑑𝑑−𝑏𝑏𝑐𝑐

𝑏𝑏𝑑𝑑

• Multiplication:
𝑎𝑎
𝑏𝑏

× 𝑐𝑐
𝑑𝑑

= 𝑎𝑎𝑐𝑐
𝑏𝑏𝑑𝑑

• Division:
𝑎𝑎
𝑏𝑏

÷ 𝑐𝑐
𝑑𝑑

= 𝑎𝑎
𝑏𝑏

× 𝑑𝑑
𝑐𝑐

= 𝑎𝑎𝑑𝑑
𝑏𝑏𝑐𝑐

Presenter Notes
Presentation Notes
If we summarize the four arithmetic operations as simple algebraic formulas, our task becomes one of converting the formulas to C++ functions.

FORMULAS TO OBJECTS

a
b

+
c
d

=
a*d + b*c

b*d
f1 f2 f3

numerator
denominator

• a = f1.numerator

• b = f1.denominator

• c = f2.numerator

• d = f2.denominator

• a*d + b*c = f3.numerator

• b*d = f3.denominator

Presenter Notes
Presentation Notes
Let's work through the addition operation in more detail by adding two fraction objects, f1 and f2. The letters a and b are f1's numerator and denominator, and c and d are f2's. The formula represents the sum of the two fractions, f1 and f2. In arithmetic formulas, the horizontal bars denote a division operation. However, the program maintains the numerator and denominator of each fraction as separate integers, so it doesn't perform the division operation – the horizontal lines separate the numerator and denominator.So, the numerator of the sum, f3, is the sum of two products: a*b+b*c. And the denominator is the product b*d. Introducing variables a, b, c, and d is confusing and unnecessary. Instead, use the variables already defined in the program.

ADD:
VERSION 1

fraction fraction::add(fraction f2) const

{

 fraction f3;

 f3.numerator = numerator * f2.denominator + f2.numerator * denominator;

 f3.denominator = denominator * f2.denominator;

 return f3;

}

Presenter Notes
Presentation Notes
The first version of the add function produces a numerically correct value but subtly fails the requirements. The requirements stipulate that the constructors must reduce the fraction to the lowest terms. That means that a constructor must reduce a fraction like 10/15 to 2/3. The default and conversion constructors don't need to do this; only the general constructor does. The default constructor creates the fraction 0/1, so there isn't anything to reduce. Similarly, the conversion constructor creates an integer over 1; again, there isn't anything to reduce. However, the addition operation could produce a result like 10/15, which the general constructor should reduce to 2/3.This version of the add function begins by creating an empty fraction. When it calculates the numerator and denominator, the constructor has finished, and the opportunity to reduce the fraction has passed.

ADD:
VERSION 2

fraction fraction::add(fraction f2) const

{

 int n = numerator * f2.denominator + f2.numerator * denominator;

 int d = denominator * f2.denominator;

 return fraction(n, d);

}

Presenter Notes
Presentation Notes
The second version of the add function works as required. It begins by calculating the numerator and denominator of the sum and saves the results in a pair of local variables. It creates a new fraction object representing the sum with the general constructor. The general constructor reduces the fraction to the lowest terms as part of the construction process.

ADD:
VERSION 3

fraction fraction::add(fraction f2) const

{

 return fraction(numerator * f2.denominator + f2.numerator * denominator, denominator * f2.denominator);

}

Presenter Notes
Presentation Notes
The third and final version of the add function is a modest variation on the second. It forgoes the local variables by calculating the numerator and denominator as expressions in the general constructor call. The other arithmetic functions, subtract, multiply, and divide, work in the same way as the second or third version of add.

FRACTION I/O

void fraction::print() const

{

 cout << endl << numerator << "/"

 << denominator << endl;

}

void fraction::read()

{

 cout << "Please enter the numerator: ";

 cin >> numerator;

 cout << "Please enter the denominator: ";

 cin >> denominator;

}

Presenter Notes
Presentation Notes
The input and output functions are simple but satisfy the stated requirements.

	Fraction 1 Example
	Fractions:�Classes and Objects
	Requirements
	Fraction Class
	Fraction Constructor
	Fraction Formulas
	formulas to objects
	Add:�Version 1
	Add:�Version 2
	Add:�Version 3
	Fraction I/O

