
POURING PUZZLE

Objects and Member Functions

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The pouring puzzle example was created to demonstrate many of the object-oriented concepts presented in chapter 9. Perhaps the most important concept demonstrated is the relationship between two objects that are instances of the same class and that must work together in a single member function.

THE PROBLEM

3 oz. 5 oz. 8 oz.

Presenter Notes
Presentation Notes
The problem is another puzzle that we solve with a C++ program. We begin the problem with three glasses with different sizes: the first glass holds 3 ounces, the second glass holds 5 ounces, while the third glass holds 8 ounces. The first two glasses are initially empty while the third glass is full. None of the glasses have any markings on them like a measuring cup might have.
The goal of the puzzle is to pour water between the glasses until at least one glass contains exactly 4 ounces. We assume that the player does not spill or otherwise lose any water.

THE POUR OPERATION:
destination.pour(source)

volumevolume

amount

space

destination source

Presenter Notes
Presentation Notes
We begin to design our solution by drawing and labeling a picture. Pictures help us to identify what information we have and what we need to calculate. They help us to organize and name the information. The names are useful as we develop algorithms and then convert the algorithms into programs.
The pour operation is the most crucial sub-problem to solve. Writing in pseudocode, we choose one glass to be the destination – the glass into which water is poured – and one glass to be the source – the glass from which water is poured. We assign the roles to the glasses arbitrarily – we could just as easily reverse the roles and put the destination glass in the parentheses. What is very import, is that once we have assigned roles to the two glasses that we use those roles consistently throughout the problem.
We draw our picture with two general glasses – general in the sense that we are not concerned at this point with the exact capacities of the glasses. Our goal is to solve the general case – that is, to solve the pouring sub-problem in a way that does not depend on the capacities of the two glasses. By solving the general case, we develop an algorithm, and later a function, that will work with all the glasses, and it allows us to later change the sizes of the glasses if we need to do so.
Each glass has a volume – the total amount of water that it can hold. The volume does not change once the glass is created. Each glass also has an amount – how much water it currently holds. Finally, each glass also has some space – how much water can be poured into the glass. Given any two of these quantities, it’s possible to calculate the third value. The space and the amount change every time the glass participates in a pour operation.

POURING ALGORITHM (VERSION 1):
destination.pour(source)

int space = volume - amount;

if (space < source.amount)
{
 source.amount -= space
 amount = volume
}
else
{
 amount += source.amount
 source.amount = 0
}

volumevolume

amount

space

destination source

Presenter Notes
Presentation Notes
There are two quantities that limit how much water is poured from one glass to the other: how much space there is in the destination glass and the amount of water available in the source glass. So, we use an if-statement to determine which quantity to use. If the space in the destination glass is the limiting quantity, we take as much water as possible from the source and leave the water that won’t fit. The pour operation makes the destination glass full. But, if there is more space in the destination than there is water in the source, then we move all the water from the source to the destination, which leaves the source glass empty.

POURING ALGORITHM (VERSION 2):
destination.pour(source)

int space = volume - amount;

transfer = min(space, source.amount)

amount += transfer
source.amount -= transfervolumevolume

amount

space

destination source

Presenter Notes
Presentation Notes
We can restate the same algorithm more compactly if we use the “min” function. We can’t pour or transfer more water than we have in the source glass, nor can we pour or transfer more water than there is space in the destination glass. So, we transfer the smallest or minimum of those two quantities – the “min” function essentially replaces the if-statement in the last version of the algorithm. We add the transferred water to the destination and subtract the transferred water from the source.
Notice that both algorithms modify the source glass – that’s the object inside the parentheses. This observation means that we can’t pass the source object by-value – we must pass it by-reference or by-pointer.

PASS BY REFERENCE PASS BY POINTER

PASSING THE “SOURCE” GLASS

Glass

-pours : int

+Glass(a_volume : int, a_amount : int)

-volume : int
-amount : int

+getVolume() : int
+getAmount() : int
+display() : void
+getPours() : int
+pour(source : Glass &) : void

Glass

-pours : int

+Glass(a_volume : int, a_amount : int)

-volume : int
-amount : int

+getVolume() : int
+getAmount() : int
+display() : void
+getPours() : int
+pour(source : Glass *) : void

Presenter Notes
Presentation Notes
Details, like argument passing, are a part of the implementation or programming phase of software development. Two UML class diagrams act as a bridge between the analysis and implementation phases.
The class diagrams show three attributes or variables: volume, amount, and pours. Volume and amount belong to individual Glass objects, which means that each Glass object has its own, distinct copy of both variables. The static pours variable, which counts how many times a player pours water from one glass to another, belongs the class – that is, all the Glass objects will share a single copy of the pours variable. The UML denotes static variables and functions by underlining them.
The constructor builds a Glass by initializing its volume and the initial amount of water that it contains. getVolume and getAmount are accessor or getter functions that return the values currently stored in the volume and the amount member variables. The display function prints the values stored in the volume and amount variables of the object calling the function. getPours returns the number of pours the player has made; it is made static because it accesses static data.
The only difference between the two versions of the UML class is the way the source or “from” object is passed to the pour function. In the first version, it is passed by-reference, and in the second version is it passed by-pointer.

MANAGING THE GLASSES:
SEPARATE OBJECTS

Glass g1(3, 0);
Glass g2(5, 0);
Glass g3(8, 8);

g1.pour(g2);
g2.pour(g1);
g1.pour(g3);
g3.pour(g1);
g2.pour(g3);
g3.pour(g2);

while (the puzzle is not solved)
{

int source = user input;
int destination = user input;

if (destination == 1 && source == 2)

g1.pour(g2);
else if (destination == 2 && source == 1)

g2.pour(g1);
. . .

}

Presenter Notes
Presentation Notes
The puzzle requires three Glass objects, which we could instantiate as three separate variables. There are six different ways that the three objects can interact through the pour function, depending on which object is the source and which is the destination.
We can outline the solution using pseudocode: the puzzle loops while the player chooses the source and destination glasses, and the program carries out the pouring operation. The problem is that this solution requires another long and cumbersome if-statement with one branch for each of the six possible interactions.

MANAGING THE GLASSES:
ARRAY OF OBJECTS

Glass glasses[3];

while (the puzzle is not solved)

{

 int source = user input;

 int destination = user input;

 glasses[destination].pour(glasses[source]);

}

Presenter Notes
Presentation Notes
As we have done in the past, we can use an array to help simplify the code by eliminating the if-statement altogether. The pseudocode creating the array of Glass objects is deliberately vague at this point but will be clarified in the following sections. The puzzle loops as it did in the previous version, allowing the player to choose the source and destination glasses. The advantage of replacing the three separate objects with an array of objects is clear when we recognize that the long if-else ladder is replaced by a single pour-function call based on array elements.

THE PUZZLE
LOGIC

glass2.amount != 4
and

glass3.amount != 4

Print amount and
volume of all three

glasses

Prompt for and
read destination

glass

Prompt for and
read source glass

Pour from source
to destination

true

Print win message.
Print final amounts.

Print total number of pours.
false

Done

Start

Presenter Notes
Presentation Notes
Finally, we outline the basic logic of the program.
First, the while-loop test is represented by the diamond at the top of the logic diagram. The puzzle loops while neither of the two larger glasses contain exactly 4 ounces. We don’t consider the first, smaller glass because it is too small, holding a maximum of 3 ounces.
Next, the puzzle prints the current state, that is, the amount and volume of all three glasses.
In the third step, it prompts the player for the destination glass,
and then it prompts for the source glass.
Finally, the puzzle pours water from the source to the destination.
When at least one glass has 4 ounces, the puzzle prints the current state, how many pours were taken, and then terminates. I’ve been able to solve the puzzle in as little as six pours.

	Pouring Puzzle
	The Problem
	The Pour Operation:�destination.pour(source)
	Pouring Algorithm (version 1):�destination.pour(source)
	Pouring Algorithm (version 2):�destination.pour(source)
	Passing the “Source” Glass
	Managing The Glasses:�Separate Objects
	Managing The Glasses:�Array of Objects
	The Puzzle Logic

