
Adobe Captivate

Page 1 of 56

Slide 1

The Glass Class

Glass Members

UML class diagrams should be language agnostic

For clarity, the pour function is implemented as pass by reference

Glass

‐pours : int

+Glass(a_volume : int, a_amount : int)

‐volume : int
‐amount : int

+getVolume() : int
+getAmount() : int
+display() : void
+getPours() : int
+pour(source : Glass &) : void

UML class diagrams are meant to be independent of any specific programming language. That means
that features that are specific to a given language are typically omitted from a UML diagram. For
example, looking at the pour operation at the bottom of the diagram, we wouldn’t typically show it as a
pass by reference on a UML diagram, and instead would let C++ programmers choose pass by
reference or pass by pointer; programmers using other languages would choose a passing technique
appropriate for their language. However, to simplify and clarify this programming demonstration, we’ll
explicitly note that the pour function is implemented as pass by reference.

Adobe Captivate

Page 2 of 56

Slide 2

Text Captions

We begin by making a new project.

Adobe Captivate

Page 3 of 56

Slide 3

Text Captions

Make sure that the project is empty.

Adobe Captivate

Page 4 of 56

Slide 4

Text Captions

Name the project “Glass1” (we’ll write a slightly different version in the next section).

Adobe Captivate

Page 5 of 56

Slide 5

Text Captions

Our next step will add a both a header and a source code file to the project.

Adobe Captivate

Page 6 of 56

Slide 6

Text Captions

Choose “C++ Class” from the menu and name it “Glass.” Doing this creates a header file with the Glass
class specification started and a source code file – all in one step!

Adobe Captivate

Page 7 of 56

Slide 7

Text Captions

The next pop up window allows us to change the name of the class and/or the names of the two files.
We’ll take the default values, so just press the “OK” button.

Adobe Captivate

Page 8 of 56

Slide 8

Text Captions

You can now see both file names in the “Solution Explorer” pane. Click on “Glass.h” in the Solution
Explorer to open the file. We’ll begin by filling out the class specification started by Visual Studio.

Adobe Captivate

Page 9 of 56

Slide 9

Text Captions

I often forget to make the new project the startup project, so let’s do that now by right-clicking the
project and selecting “Set as Startup Project.”

Adobe Captivate

Page 10 of 56

Slide 10

Text Captions

We’ll need both a private and a public section.

Adobe Captivate

Page 11 of 56

Slide 11

Text Captions

One of the challenges of the game is to minimize the number of times that we must pour water from one
glass to another to solve the puzzle. There are a total three glasses, but only two glasses are involved
during each pouring operation. This fact makes it impossible to track the number of times that water is
poured from one glass to another with a member variable in each Glass object. So, our approach is to
create a single variable that is shared by all three Glass objects. We do this by making the variable
“static,” which means that it is a class variable rather than an instance variable (that is, it’s a variable
that is owned by the class as a whole rather than a variable that is owned by a single object). The UML
class diagram denotes class or static variables by underling them.

Adobe Captivate

Page 12 of 56

Slide 12

Text Captions

From the results of the previous section, where we solved the problem and designed the program, we
know that three values characterize each glass: the glass’s total volume, the current amount of water in
the glass, and the current amount of empty space in the glass. It’s convenient to represent these values
with member variables in the Glass class.

Given any two of these values, it’s possible to calculate the third. So, our Glass class only needs two
member variables to solve the pouring problem and I choose the total volume as the first.

Adobe Captivate

Page 13 of 56

Slide 13

Text Captions

For the second value or variable, I choose the current amount of water in the glass. While the choices
are arbitrary, once they are made, the functions that follow rely on these variables. If we change the
Glass member variables, then must also update the Glass functions.

Adobe Captivate

Page 14 of 56

Slide 14

Text Captions

Our next task is to develop the Glass member functions. I usually start with the constructor or
constructors. We’ll use the constructor to initialize the Glass’s volume and the amount of water initially
in the Glass as we instantiate each glass object.

Adobe Captivate

Page 15 of 56

Slide 15

Text Captions

This constructor is a very simple function and is a perfect place to use an initializer list. Recall that an
initializer list can only be used with a constructor, begins with a colon, and has one element for each
member variable. Each element consists of the member variable’s name and its initial value, which in
this example, is one of the constructor’s arguments. The initial value is enclosed with parentheses.

Once the member variables are initialized, there are no remaining tasks for the constructor to do. So,
we end the list with a pair of empty braces, which is the function’s body.

Adobe Captivate

Page 16 of 56

Slide 16

Text Captions

It’s often convenient to have getter functions for some of the member variables and this is the case for
the overall puzzle or game that we are creating. Getters are typically very simple functions as illustrated
by getVolume.

Adobe Captivate

Page 17 of 56

Slide 17

Text Captions

A second getter function, getAmount, will allow users to see the amount of water currently stored in the
Glass object.

Adobe Captivate

Page 18 of 56

Slide 18

Text Captions

The program really doesn’t need a display function: we can get the same information from the two
getter functions, but it is a convenient function to have.

Notice that Intellisense is flagging “cout” as an error. The standard mantra is, “When you use a feature,
#include the corresponding header file.”

Adobe Captivate

Page 19 of 56

Slide 19

Text Captions

We correct the problem by adding the #include <iostream> directive and the using namespace
statement at the top of the file, above the class specification. The red underlining will go away once we
click the mouse at the end of line 17 or beyond.

Adobe Captivate

Page 20 of 56

Slide 20

Text Captions

The function getPours is just another getter function. However, the pours variable is a class variable
and not a member variable – or said another way, pours is a static variable. That means that the getter
function must also be static. We’ll see later how that impacts the way that we call the function.

Adobe Captivate

Page 21 of 56

Slide 21

Text Captions

Finally, we add the pour function, which is the only complex member function in the program. Since it is
a larger function, we’ll only prototype it in the class and define it in a separate source code or .cpp file.

Adobe Captivate

Page 22 of 56

Slide 22

Text Captions

The newest version of the Visual Studio editor has a neat feature that speeds navigation just a little. After
finishing the prototype, the editor displays a little screwdriver on the left side – you may need to wait just a
moment for it to appear. If we click on the down-arrow next to the screwdriver, we’ll see two options: one option is
to copy the function’s signature or prototype to the clipboard, which we can use to begin defining the function
elsewhere. The other option is to outline the function in Glass.cpp. Let’s select that option.

Adobe Captivate

Page 23 of 56

Slide 23

Text Captions

It looks like this little yellow window is opening in Glass.h, but notice the line numbers and the name
Glass.cpp on the tab. Visual Studio has written this outline of the pour function in Glass.cpp. While we
can edit the function in the yellow window . . .

Adobe Captivate

Page 24 of 56

Slide 24

Text Captions

I prefer - and that’s all it is, a personal preference – to edit the function in a “normal” editor window. So,
click the “x” button on the Glass.cpp tab to close the yellow window.

Adobe Captivate

Page 25 of 56

Slide 25

Text Captions

Find Glass.cpp in the solution explorer and double-click the name. This opens the file in a standard
editor window, where we can see the function outline created just few moments ago. Notice the class
name, “Glass,” followed by the scope resolution operator on line 3. This is how the compiler knows that
this function is a part of the Glass class.

This function will pour or transfer water between two glass objects: the source and the destination. The
role played by each glass object is determined by its position the function call:

destination.pour(source);

Adobe Captivate

Page 26 of 56

Slide 26

Text Captions

Lest we forget, there is one task that we should do before completing the pour function. We need to
initialize the static or class variable pours. On line 3, this looks very much like a dreaded global variable,
but the class name and scope resolution operator tie this variable solidly to the Glass class. That is, it
reduces the variable’s scope to the Glass class.

This example demonstrates the syntax for initializing a static variable in C++. Java has a somewhat
cleaner syntax for doing this.

Adobe Captivate

Page 27 of 56

Slide 27

Text Captions

Our goal is to minimize the number of times that we must pour water from one glass to another. So, we
must count each pour operation, which we do by incrementing the pours counter whenever the pour
function runs.

Adobe Captivate

Page 28 of 56

Slide 28

Text Captions

The rest of the pours function can be divided into two parts:

 First, calculate the maximum amount of water that can be poured or transferred from the source
glass to the destination glass, and

 Second, update the two Glass objects to complete the pouring operation.

Both problems were solved in the previous section, and the solution implemented here begins by
calculating how much space is available in the destination glass.

Adobe Captivate

Page 29 of 56

Slide 29

Text Captions

The next step is calculating how much water to pour or transfer from the source to the destination glass.
We can’t pour more water than there is in the source glass, nor can we pour more water than there is
space available in the destination glass. So, the amount that we can pour is the smallest or minimum of
the space in the destination and the amount in the source.

C++ has a library function named min that we can use to select the smallest or minimum of these two
values.

Adobe Captivate

Page 30 of 56

Slide 30

Text Captions

To use the min function, we need to #include the <algorithm> header file and add the using namespace
statement.

Adobe Captivate

Page 31 of 56

Slide 31

Text Captions

With the min function, it’s easy to calculate the amount of water to transfer from the source to the
destination.

Adobe Captivate

Page 32 of 56

Slide 32

Text Captions

The transfer amount is added to the destination glass and subtracted from the source glass.

The pour function is now complete.

Adobe Captivate

Page 33 of 56

Slide 33

Text Captions

The next step is adding a main function that implements the game by using the finished Glass class.
Right-click the project, select “Add” and “New Item….”

Adobe Captivate

Page 34 of 56

Slide 34

Text Captions

Create a C++ source code file named “game” and press the “Add” button.

Adobe Captivate

Page 35 of 56

Slide 35

Text Captions

We’ll place the rest of the game code in main in the game.cpp file.

Adobe Captivate

Page 36 of 56

Slide 36

Text Captions

This is basically our standard starting code with the addition of the #include “Glass.h” directive.

Adobe Captivate

Page 37 of 56

Slide 37

Text Captions

The game requires three instances of the Glass class – that is, three Glass objects. Two of the glasses,
the 3- and 5-ounce, are initially empty; the 8-ounce glass is initially full. As discussed in the previous,
problem solving section, we can simplify some of the operations if we use an array of Glass objects
rather than three separate objects. Notice that the glasses are created on the stack and that the Glass
constructor is called for each object.

Adobe Captivate

Page 38 of 56

Slide 38

Text Captions

The game continues until at least one of the three glasses contains four ounces of water. One glass has
a maximum volume of three ounces, so it isn’t considered in the while-loop test.

Adobe Captivate

Page 39 of 56

Slide 39

Text Captions

To help the player decide how to take the next step, at the beginning of each move, we display the
current state of the game – that is, the amount of water in each glass.

Adobe Captivate

Page 40 of 56

Slide 40

Text Captions

The next step allows the player to choose to which glass the water is poured. It’s convenient to label the
glasses with counting numbers – that is 1, 2, or 3 – rather than starting with 0, as that is likely more
familiar to most people.

Adobe Captivate

Page 41 of 56

Slide 41

Text Captions

As suggested by the prompt, we also allow the player to end the game by entering the value 4 and
implement the early exit with an if-statement.

Adobe Captivate

Page 42 of 56

Slide 42

Text Captions

Next, we allow the player to choose from which glass the water is poured. Again, we label the glasses
as 1, 2, or 3, and allow the player to end the game early by entering 4.

Adobe Captivate

Page 43 of 56

Slide 43

Text Captions

Anytime that user input is used as an index into an array, it must be validated – this is an important
security issue: indexing an array out of bounds causes a buffer overrun or a buffer overflow. What
happens depends on several factors that are completely beyond our control. In the worst-case scenario,
nothing bad happens while we are testing our code, but later, the program can crash, or it can leave a
vulnerability that a bad actor can exploit to coopt or infect the system.

A simple if-statement can check the user input and ensure that it represents a valid array index.
Assume that the index is valid and focus your attention on line 34. To correctly index both arrays, the
program subtracts 1 from each of the user input values. This step is done because we labeled the
glasses with counting numbers: 1, 2, and 3. But C++ arrays are zero-indexed, so, for an array of three
objects, valid index values are 0, 1, and 2.

Still looking at line 34, once two of the three objects are identified in the array, the pour function is
called, which pours or transfers water from the glass object inside the parentheses to the glass object
appearing to the left of the dot operator. This completes the code inside the while-loop.

Adobe Captivate

Page 44 of 56

Slide 44

Text Captions

Solving the puzzle ends the while-loop and the program prints the total number of pour operations taken
to solve the puzzle. Recall that the getPours function is static – line 40 illustrates the preferred way to
call a static function – the class name, the scope resolution operator, and then the function name.

Adobe Captivate

Page 45 of 56

Slide 45

Text Captions

Finally, the program prints the final state of the game – that is, the amount of water in all three glasses.

Adobe Captivate

Page 46 of 56

Slide 46

Text Captions

Save all the files by clicking the button with the picture of two floppy disks.

Adobe Captivate

Page 47 of 56

Slide 47

Text Captions

Build the project.

Adobe Captivate

Page 48 of 56

Slide 48

Text Captions

The program builds without any errors.

Adobe Captivate

Page 49 of 56

Slide 49

Text Captions

Start the program running.

Adobe Captivate

Page 50 of 56

Slide 50

Text Captions

The program prints the game’s initial state: the two smaller glasses are empty and the largest, 8-ounc
glass, is full.

I choose glass 2 to receive water from glass 3. Glass 2, which has a volume of 5 ounces, is filled with
water, leaving 3 ounces of water in glass 3. Glass 1 wasn’t used and remains empty.

Adobe Captivate

Page 51 of 56

Slide 51

Text Captions

My next move pours water from glass 2 to glass 1, which fills glass 1 with 3 ounces and leaves 2
ounces in glass 2. Glass 3 wasn’t used this time, so it still holds 3 ounces.

Adobe Captivate

Page 52 of 56

Slide 52

Text Captions

Next, pour water from glass 1 to glass 3.

Adobe Captivate

Page 53 of 56

Slide 53

Text Captions

The next move repeats the second move: pour water from glass 2 to glass 1.

Adobe Captivate

Page 54 of 56

Slide 54

Text Captions

Pouring water from glass 3 to glass 2 also repeats an earlier move – the first one – but this time it sets
the game up for the final, winning move.

Adobe Captivate

Page 55 of 56

Slide 55

Text Captions

Pouring from glass 2 to glass 1 leaves 4 ounces of water in glass 2, which solves the problem and ends
the while loop. Below and outside the loop, the program prints the total number of pour operations taken
to solve the puzzle and the final state of the game. I’ve not been able to solve the puzzle with fewer
than 6 pouring operations.

Adobe Captivate

Page 56 of 56

Slide 56

Text Captions

