
Taint Propagation in a Network

Grigoriy Kerzhner and Kyle Feuz and Neal Sorensen and Chad Mano

Department of Computer Science
Utah State University

Logan, UT 84322, USA
gik@duke.edu,neal.sorensen@usu.edu,kyle.feuz@aggiemail.usu.edu,chad.mano@usu.edu

Abstract. This paper proposes a network taint propagation algorithm
and is a combination of software taint propagation and botnet infection.
We propose an efficient algorithm to monitor the spread of infection in
a local area network. In our approach, whenever an infected machine
communicated with an uninfected machine, the new machine was con-
sidered infected as well. Initially, one machine was considered tainted
by a gateway monitoring system and thus became a bot. Then, as this
machine infected others in the local network to create a sub-botnet, our
taint propagation algorithm monitored the spread of this infection. This
algorithm effectively implemented network taint propagation with a less
than 10 percent increase in traffic.

1 Introduction
This paper describes the design and implementation of a taint propagation al-
gorithm in a local area network. Our taint propagation system is a fusion of two
well studied topics: botnets and taint propagation. To begin, we will give a brief
background on each of these two subject.

Botnet infection is one of the most serious problems threatening the security
of the Internet today [1, 11]. In 2004, it was estimated that almost one million
systems were part of a botnet; this number is only expected to rise in the fu-
ture [8]. A botnet is a collection of infected hosts called bots. These bots receive
commands and instructions from a leader known as the botmaster. Every bot
has two basic functions. Firstly, a bot tries to infect as many other machines as
possible. Secondly, a bot carries out malicious instructions from the botmaster.
Traditionally, each bot in the botnet received commands from one centralized
command and control server [3, 8]. Such a botnet is called a centralized bot-
net; however, centralized botnets are weak because they can be destroyed by
disabling communication with this single command and control server. Because
of this weakness, Peer-to-Peer (P2P) botnets have recently emerged as a more
sophisticated attack [7].

In software development, tainted data is any data input by a user. If an
application prompts input from a user, the user could type specific commands
to preform malicious actions. A very simple example of this phenomenon is the
System.exec() function in Java. If an application does not watch for tainted
data, the user may use this function to run his or her own commands on the



2

host system [5]. To prevent attacks such as the System.exec() attack, user input
must be followed through an application to make sure it does not cause the
application to preform malicious or illegal actions. This process is called taint
propagation [5].

In this paper, we describe the combination of taint propagation and the
event of a botnet infection. Specifically, we worked with a small local network.
Traffic was monitored between this local network and the rest of the Internet and
eventually, one machine was declared infected. This initial infection is analogous
to a user entering possibly dangerous input into a software application. After the
initial infection, a machine in the sub-botnet was considered newly infected when
an already infected machine communicated with it. Therefore, after a machine
in a local network was initially infected, tainted machines communicated with
non-tainted machines and the overall list of infected machines grew.

This paper presents an efficient algorithm for taint propagation in a local
network in the following manner. Firstly, we discuss related work done about
sub-botnets and taint propagation. Secondly, we discuss motivation for and lim-
itations of our work. Thirdly, we present our taint propagation framework and
its implementation. Then, we examine the correctness and efficiency of our taint
propagation application. Finally, we conclude and propose ideas for future re-
search.

2 Related Work
In this section, we describe related work on sub-botnets and software taint prop-
agation to prepare the reader for the fusion of the two topics in our approach.

2.1 Infection of a Local Network: the Creation of a Sub-Botnet
To date, Bothunter is the best known system that is capable of detecting P2P
botnets [4]. However, Bothunter is only a gateway monitoring system and thus
may not detect the infection of a local network if there is cooperation between
the local machines. This flaw exists because in order for Bothunter to detect
an infection, a machine must preform several actions that indicate that the
system has been compromised. However, in a local network it is possible to divide
these actions between several computers. As a consequence of such a division,
machines in the local network still gets infected but the infection is not detected
by traditional botnet mitigation protocols. From here on, such an infected local
network is referred to as a sub-botnet [9].

A botnet that is able to evade Bothunter and infect a local network is de-
scribed in detail in [5,9] but we will briefly summarize its behaviour here. Firstly,
one computer in the local network must be comprised from an external source.
Then, this infected machine attempts to quietly infect other machines in the
local switched network. Such a local infection is much harder to detect by an
existing infection detection system (IDS) [10]. Furthermore, this local infection
will certainly not be detected by gateway monitoring systems such as Bothunter
because infections happen inside the sub-botnet and not at the entrance.

Obviously, in order to infect a local network, local machines must commu-
nicate with each other. This communication within the sub-botnet makes it



3

possible for us monitor infection spread throughout the network. The approach
of [10]. proposes monitoring switches to detect such communication and thus
detect infection in the local network. This project will use this concept of switch
monitoring to implement taint propagation in a sub-botnet.

2.2 Software Taint Propagation

While software taint propagation protects an application from many different
types of attacks, injection attacks are the most popular and dangerous [6]. A
typical injection attack usually follows a framework similar to the System.exec()
assault described in the introduction [5]. Applications vulnerable to injection
attacks must accept some form of user input. The malicious user attempts to
compromise the application by inputting his or her own code instead of regular
user input expected by the software. Therefore, if an application is not protected
against injection attacks, a malicious user could use such an attack to access
confidential information the application stores in a database.

In order to protect a software application against injection attacks, any user
input is considered tainted. Then, taint propagation is used to track this tainted
input throughout the application. While [5] provides an in depth overview of
software taint propagation, we will briefly summarize it here. Any data entered
by the user is marked tainted; this is usually done by adding a special header to
user input. Furthermore, whenever tainted data is combined with non tainted
data, the whole result is considered tainted as well and is therefore also marked
with the taint character. Consequently, whenever a function is called within an
application, the application checks whether the inputs to the function contain
the taint character. In such an event, special precautions are taken to ensure no
malicious actions are preformed. This concept of tainting the whole whenever a
component is tainted is the core of our network taint propagation approach.

3 Problem Statement and Motivation

Both network taint propagation and sub-botnets have been well documented.
However, almost no work has been done on network taint propagation, the com-
bination of these two areas of study. Specifically, we believe we are the first
to propose a resource unintensive approach to network taint propagation. This
approach is necessary because there is a very clear parallel between malicious
use of software and malicious use of a local network. In both cases, infection
occurs from an outside source. Furthermore, in both cases this tainted infection
spreads throughout the environment and could be used maliciously in several
places. Because of these similarities, we decided to create an efficient network
taint propagation monitoring system.

There is one main limitation to our system. To avoid false negatives, any
communication from an infected machine to an uninfected machine is considered
malicious. This can be problematic when an infected machine communicates with
another machine for non malicious purposes. In this case, our taint propagation
system would declare this other machine tainted when it is not actually infected.
Nevertheless, because of fairly rapid detainting and extremely low overhead of
our system, we believe this limitation is acceptable.



4

4 Design
The taint propagation experiment was implemented on a network of four virtual
switches and three virtual machines. These machines were infected and became
part of a virtual sub-botnet throughout the experiment. Figure 1 is a diagram of
this virtual network. The switches listened for an initial message that declared

Fig. 1. Virtual network used for the taint propagation experiment

one system in the network malicious. After a machine was declared malicious, the
designed software followed the following three steps. Firstly, it detected any traf-
fic from the tainted machine. Secondly, it figured out where the malicious traffic
was going. Finally, it declared the destination of this traffic as also malicious.
From here, the three step process was repeated until the end of the experiment.

4.1 Behavior of the Virtual Bot
The botnet functioned in the following manner. One computer in the virtual net-
work got the malicious binary from outside the network. This simulates an initial
infection that evades Bothunter. Figure 2 is a diagram of this initial infection.

Then, this infected bot communicated with the other machines in the sub-
botnet. This secondary infection is pictured in Figure 3. Specifically, the infected
bot looked for local machines with a vulnerability. If a vulnerable system did not
have a copy of the malicious binary, the infected bot sent this machine a copy
of the binary. Once all vulnerable computers had the malicious file, the bots in
the sub-botnet communicated with each other and cooperated to preform other
malicious activities.
4.2 Scapy Messages: the Key to the Taint Propagation

Implementation
Throughout the taint propagation experiment, we considered any communi-
cation between a malicious machine and an uninfected machine as malicious.
Therefore, when an infected computer communicated with an uninfected com-
puter for any reason, the uninfected computer was then considered infected.



5

Fig. 2. An initial infection of one machine in the subnet

Fig. 3. The initially infected machine propagates its infection to other machines in the
virtual network.



6

Apart from the regular network duties of each switch, the taint propagation
system we designed assigned two important new jobs to each switch. Firstly,
each switch kept a list of IP addresses of machines declared tainted in the local
network. Secondly, the switch sent and received specially crafted packets. The
purpose of these packets was to taint and detaint machines in the network.

The tool used to send and receive these packets was Scapy, a python module
that makes it possible to send, receive and craft network packets. These packets
were sent over the local Ethernet layer and simulated simple IPFIX messages
that network switches use to communicate. Scapy packets instructed a switch
to either add or remove an IP address from its list of malicious computers and
were handled in the following way. Each switch listened for the Scapy messages
on a specific port, 4329 in our experiment. A Scapy message had two important
fields: the payload field and the header field. The payload consisted of an IP
address to be added to or removed from the switch’s malicious list. The header
specified whether the purpose of the message was to taint or detaint. When a
switch sniffed a Scapy message on the specific port, it first read the header to
identify what the type of message was. Then, the switch either added or removed
the IP address in the payload of the Scapy message according to the instruction
in the header.

4.3 Taint propagation algorithm

Each switch was equipped with Python code to handle taint propagation tasks
and the structure of this code is described in this subsection. Figure 4 is a flow
chart showing the algorithm described below.

Fig. 4. Our taint propagation algorithm.



7

One main switch, with its code slightly changed to serve a leading duty,
and three subordinate and intermediate switches listened for network traffic.
The experiment started when one machine in the virtual network was declared
malicious. This event simulated Bothunter detecting an infected machine in the
local network. The main switch added the IP address of this newly infected
machine to its malicious list. Then, the main switch sent a Scapy message to the
newly infected machine with that machine’s IP in its payload. Each switch on
the way to the newly infected machine recorded the IP address from the payload
of the Scapy packet.

Each switch also monitored regular network flow. A new machine was de-
clared malicious in the following four step process. Firstly, when a switch sniffed
a packet, it checked to see whether the source address of the packet is malicious.
If that was the case, then the destination IP of the packet was declared as ma-
licious as well. Secondly, since the main switch kept a record of all malicious IP
addresses, it was notified about this newly infected machine. The switch that
declared the machine malicious preformed this notification by sending a Scapy
message to the main switch with the IP address of the newly infected machine
in the payload. Thirdly, the main switch added this new address to its mali-
cious list. Lastly, the main switch sent a Scapy message to the newly declared
malicious machine with this newly declared IP address in the payload. Once
again, every switch on the way to the machine intercepted the Scapy message
and added the payload to its malicious list.

If this taint propagation algorithm was implemented with no additional code,
then eventually most computers in a network would be declared malicious. To
prevent this, the experiment was run again with a detainting algorithm. The
main switch kept track of what time the malicious IP was added to its malicious
list. If this IP had been in the list for longer than the timeout period (thirty
seconds in our inital experiments), it was removed from the malicious list of the
main switch. However, since other switches in the virtual network also had this
IP declared as malicious, they had to be notified of the detainting as well. This
was done through a Scapy message with a detaint header. This message was sent
to the IP address of the machine to be detainted. Every switch that sniffed the
message deleted the IP address in the payload from its malicious list.
5 Results
Taint propagation was run on the switches of the virtual network while the
virtual network was infected and turned into a sub-botnet. To begin our testing,
the experiment was run twice, once with detainting and once without detainting.
With detainting, a computer was considered untainted 30 seconds after tainting.
Two factors were monitored throughout this initial experiment: correctness and
efficiency. After our algorithm was determined to be correct and fairly efficient,
we experimented with different detaint times. Specifically, we looked at how the
efficiency our taint propagation system changed when the detaint period was
varied.
5.1 Correctness
Since each of the virtual computers in the experiment had a vulnerability, we
expected them to all be considered tainted by the end of the experiment. This



8

turned out to be true. The taint propagation algorithm was run for 90 seconds
while the virtual network was infected. When detainting was not enabled sev-
eral machines were considered infected. All three virtual machines were correctly
counted as tainted. Furthermore, four other addresses were tainted. These extra
machines were tainted due to machines in the sub-botnet communicating with
machines outside of the local network. When detainting was enabled, fewer ma-
chines were considered infected. However, since a large amount of traffic was
processed during the 90 seconds, all four virtual computers were still considered
tainted at the end of the experiment.

5.2 Efficiency

We defined the efficiency of our system as the number Scapy packets generated by
the taint propagation system divided by total traffic in the system. Specifically,
this statistic is the number of Scapy packets received by the main switch divided
by the total number of packets received by the main switch. From here on, this
measure will be referred to as the overhead of the taint propagation system.

All traffic was monitored by the main switch to figure out what overhead the
detainting algorithm caused on the system. Figure 5 plots total traffic versus
Scapy messages that implement taint propagation. According to Figure 5, the

Fig. 5. Total network flow verus overhead created by taint propagation system

overhead caused by this taint propagation system was less than 10 percent.
Specifically, with detainting enabled our taint propagation system caused a nine
percent increase in traffic. Without detainting, taint monitoring only increased
traffic by about six percent. Figure 6 presents the overhead created by our taint



9

propagation system. According to Figure 6, the taint propagation monitoring
system was efficient throughout the experiment.

Fig. 6. Overhead caused by taint propagation system as a proportion of total network
traffic

Even though our system was decently efficient in this virtual environment,
we believe it would be much more efficient in the wild. This is true because in our
virtual network, a large proportion of traffic was created by the botnet. There-
fore, in our experiment the number of infection messages was much larger than
in a regular network. While this disparity was good for testing the efficiency and
correctness of the system, the disparity caused a higher than normal overhead.
In a real network, one would expect many more messages that do not cause any
tainting and detainting and therefore a much lower overhead.
5.3 Effect of the detaint period on the efficiency of our taint

propagation algorithm
In our final experiment, we varied the time before a tainted system was consid-
ered detainted. Four different detaint periods were used: 15, 30, 45 and 60 sec-
onds. Overhead was measured with each detaint period and the results of these
measurements are shown in Figure 7. Because a longer detaint period meant
fewer Scapy detaint messages sent between switches, lengthening the detaint
period significantly reduced the overhead of our taint propagation algorithm.
6 Summary and Future work
In conclusion, this paper presents a unique and efficient approach to taint propa-
gation in a sub botnet. Switch monitoring only cased a five to ten percent increase
in total traffic and therefore was not extremely costly to system performance.



10

Fig. 7. Overhead of the taint propagation system versus time before detainting

A few issues arose throughout our work. Firstly, in order to implement our
framework, switches must be able to run the python code at the core of our
taint propagation system. Therefore, the network must contain smart switches
or switches that have the taint propagation system already built in. Secondly,
a major difficulty in creating a more efficient taint propagation system in a
switched local network is network topology discovery. Although many algorithms
have been proposed to implement network topology discovery, this process still
proves difficult to implement efficiently [2]. This problem rises because because
modern switches are designed to be invisible in the network. For this reason, it is
difficult and costly to figure out exactly which switches are connected to which
machines.

If the topology of the network was known, taint propagation could be carried
out more efficiently. Perhaps the most important part of our taint propagation
algorithm is intercepting communication from an already tainted computer to
another machine. Without knowledge of the network topology, several switches
must watch for communication from the tainted machine. This is because it
is not clear exactly through which switches the tainted computer will try to
communicate. If the switched network layout was known, on the other hand,
only the switch closest to the tainted computer would have to be notified. This
would lead to a great reduction in the redundancy of our algorithm.

References

1. Evan Cooke, Farnam Jahanian, and Danny Mcpherson. The zombie roundup:
Understanding, detecting, and disrupting botnets. pages 39–44, June 2005.



11

2. B Donnet, T. Friedman, and M. Crovella. Improved algorithms for net-
work topology discovery. In Proc. Passive and Active Measurement Workshop
(PAM), Boston, MA, USA, Mar. 2005. See also the traceroute@home project:
http://trhome.sourceforge.net.

3. Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent B. Kang, and David
Dagon. Peer-to-peer botnets: overview and case study. In HotBots’07: Proceedings
of the first conference on First Workshop on Hot Topics in Understanding Botnets,
page 1, Berkeley, CA, USA, 2007. USENIX Association.

4. Guofei Gu, ¡i¿georgia, Vinod Yegneswaran, and Martin. Bothunter: Detecting
malware infection through ids-driven dialog correlation. pages 167–182.

5. Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation
for java. In ACSAC ’05: Proceedings of the 21st Annual Computer Security Appli-
cations Conference, pages 303–311, Washington, DC, USA, 2005. IEEE Computer
Society.

6. Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, and David Evans. Au-
tomatically hardening web applications using precise tainting. In In 20th IFIP
International Information Security Conference, pages 372–382, 2005.

7. Phillip Porras, Hassen Sadi, Vinod Yegneswaran, Phillip Porras, Hassen Sadi, and
Vinod Yegneswaran. A multi-perspective analysis of the storm (peacomm) worm.
available at: http://www.cyber-ta.org/pubs/stormworm/report, 2007.

8. Moheeb A. Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multi-
faceted approach to understanding the botnet phenomenon. In IMC ’06: Pro-
ceedings of the 6th ACM SIGCOMM on Internet measurement, pages 41–52, New
York, NY, USA, 2006. ACM Press.

9. Brandon Shirley and Chad D. Mano. A model for covert botnet communication in
a private subnet. In Amitabha Das, Hung Keng Pung, Francis Bu-Sung Lee, and
Lawrence Wai-Choong Wong, editors, Networking, volume 4982 of Lecture Notes
in Computer Science, pages 624–632. Springer, 2008.

10. Brandon Shirley and Chad D. Mano. Sub-botnet coordination using tokens in a
switched network. In GLOBECOM, pages 2169–2173. IEEE, 2008.

11. W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley. Detecting botnets with
tight command and control. In Proceedings of the 31st IEEE Conference on Local
Computer Networks, pages 195–202, 2006.


