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ABSTRACT

Pedestrian Leadership and Egress Assistance Simulation Environment (PLEASE)

by

Kyle D. Feuz, Master of Science

Utah State University, 2011

Major Professor: Dr. Vicki Allan
Department: Computer Science

Over the past decade researchers have been developing new ways to model pedestrian

egress especially in emergency situations. The traditional methods of modeling pedestrian

egress including flow-based modeling and cellular automata have been shown to be poor

models of human behavior at an individual level and fail to capture many important group

social behaviors of pedestrians. This has led to the exploration of agent-based modeling for

crowd simulations including those involving pedestrian egress. In this work, we implement a

multi-agent simulation model to specifically address the issues of pedestrian route selection

with uncertainty and group formation. Using this model, we evaluate different heuristic

functions for predicting good egress routes for a variety of real building layouts. We also

introduce reinforcement learning as a means to represent individualized pedestrian route

knowledge. Finally, we implement a group formation technique, which allows pedestrians

in a group to share route knowledge and reach a consensus in route selection. Using the

group formation technique, we consider the effects such knowledge sharing and consensus

mechanisms have on pedestrian egress times.

(82 pages)
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CHAPTER 1

Introduction

Pedestrian egress has become an important research area over the last few decades.

One of the chief concerns is providing a means to develop safe and efficient egress routes for

pedestrians in an emergency. To do this effectively, one needs to understand human behav-

ior and reactions and to be able to design effective egress routes around these characteristics

while also considering the effect of information content in the form of exits signs, maps, and

egress assistance devices. Real-world experiments are too dangerous and too expensive to

be a practical way of learning about egress efficiency. For this reason, simulation models

have been developed to demonstrate crowd behavior in an emergency. In addition to the

application of the simulation model discussed above, pedestrian simulation models have

been applied to a wide range of applications. A few such applications include the design of

buildings to detect potential bottlenecks and the determination and justification of fire-code

regulations [24]. A novel application of pedestrian simulators that has recently appeared

in research uses the simulator in conjunction with computer-vision techniques to produce

a more accurate automated pedestrian tracking system [1]. In the past, stochastic models,

flow-based models, cellular automata, or particle systems have been used to model pedes-

trian flow during an emergency evacuation [48,57]. While each of these methods have their

strengths, none of these models sufficiently captures the individual behavior of a pedestrian

while accurately modeling the behavior of the crowd as a whole [27]. A new paradigm is

needed to capture such complex actions. Thus, researchers turn to agent-based modeling.

In agent-based modeling, agents act autonomously to affect the system as a whole. The

sophistication of the agent can vary from a reactive agent that acts according to a fixed set

of rules to more advanced agents such as planning and learning agents. One of the biggest

challenges to agent-based modeling for pedestrian egress involves deciding how the agent
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should make decisions. A model that is too simple will not produce an accurate simulation

of human behavior. On the other hand, a model that is too complex will be difficult to use

and lack scalability, thereby reducing the utility of the model.

In this paper, we develop a new multi-agent simulation model, Pedestrian Leadership

and Egress Assistance Simulation Environment (PLEASE), which addresses four critical

challenges in pedestrian egress: How can pedestrians successfully navigate buildings in

which they have no prior experience and, therefore, no knowledge about the building lay-

out? How can pedestrians be given different amounts of knowledge about the building

without requiring the user to manually enter the information? What effect does knowledge

of congestion levels have upon pedestrian egress? And, what effect does group formation

have on pedestrian egress when group members are allowed to share and communicate route

information?

The layout for the remainder of this thesis will be as follows. Chapter 2 describes

the PLEASE system in more detail. In chapter 3, we cover pedestrian route selection

when pedestrians have no prior knowledge of route costs. In chapter 4, we present a novel

use of reinforcement learning to represent pedestrian knowledge and apply it to learning

congestion costs. Chapter 5 discusses pedestrian group formation and its impact on egress

times. Finally, chapter 6 summarizes our findings and present possible directions for future

work. The reader should be aware that Chapters 3 - 5 are papers which have been submitted

to different conferences. As such, each chapter will contain some redundant introductory

material.
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CHAPTER 2

Simulation Environment

PLEASE is built on top of the Multi-Agent Simulator of Neighborhoods (MASON)

framework developed at George Mason University. MASON is a discrete-event multi-agent

simulation library core in Java with additional 2D and 3D visualization tools [34]. MASON

provides us with an interface for setting the model parameters, visualizing the simulation

and controlling the stepping of simulation events. It does not provide the implementation

for the actual pedestrian agents. Figure 2.1 shows sample screen-shots of the user-interface.

In Figure 2.1(a), we see mason controls for automating the simulation. Figure 2.1(b) shows

MASON’s ability to allow the system user to view and modify individual agent parameters.

Finally, Figure 2.1(c) shows MASON’s ability to allow the system user to view and modify

simulation parameters.

Through the MASON framework, we implement the pedestrian agents used in PLEASE,

as well as the environment in which the pedestrians interact. Figure 2.2 shows an example

screen-shot of the pedestrian agents and building environment. The pedestrians are colored

according to the group to which they belong. Building walls are shown in blue, and building

signage is shown in green and gold.

All the pedestrian simulation agents in PLEASE use a two-tier navigational model.

The first tier performs the high level function of route selection and path planning while

the second tier performs the lower-level tactical navigation and collision avoidance. In this

chapter, we first describe the implementation of the lower-level navigation model which

uses social forces. We then describe the higher level route planning model and its various

components. Finally, we introduce the dynamic coalition formation model pedestrian agents

use to form cooperative groups. Splitting the pedestrian navigation model into two tiers

is not a novel idea, nor is the formation of groups. However, the details of our high-level
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(a) Controls to automate the simulation (b) Controls to view and manipulate agent pa-
rameters

(c) Controls to view and manipulate simula-
tion parameters

Figure 2.1: Example screen-shots of the user controls in PLEASE available through the
MASON framework
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Figure 2.2: Screen-shot of the PLEASE simulator in action. Pedestrians in the same group
have the same color. Walls are shown in blue and building signage is shown in green and
gold.

navigation model and group formation techniques are a novel contribution to the field.

2.1 Low-Level Navigation

PLEASE uses the social force model to perform low-level tactical navigation and col-

lision avoidance. The social force model is selected for the low-level tactical navigation for

four main reasons: it is simple to understand and implement, it is widely used in many simu-

lation models, it successfully reproduces many crowd phenomena, and it has been validated

using actual pedestrian data [19, 29, 33, 35]. The social force model states that pedestrian

movement can be approximated by applying multiple force vectors to a pedestrian. The

force vectors can include attraction vectors for groups or goals and repulsion vectors for

obstacles, fire, or other pedestrians. The concept first developed by Lewin [30] was later

put into these mathematical terms by Helbing [17,18] and has since been further enhanced

in [19,35]. For clarity, we define the forces which are applied to pedestrians here, but for a

more complete reference we refer the reader to [19,35].
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The social force vector ~fi(t) applied to the pedestrian i is the sum of the attraction

forces ~fatti (t) and the repulsion forces ~fatti (t) plus a random component ~f randi (t), as shown

in Formula 2.1. Figure 2.3 depicts some example forces that may be applied to a pedestrian.

Figure 2.3: Graphical depiction of social force acting on a pedestrian. The green vector
represents the driving force. The blue vector represent an obstacle repulsion force and the
red vector represents a pedestrian repulsion force.

~fi(t) = ~fatti (t) + ~f repi (t) + ~f randi (t) (2.1)

The attraction forces can be further broken down into a driving force, ~fdrvi (t) (see

Formula 2.3), in the direction of the goal and an attraction force, ~fgrpi (t) (see Formula 2.4),

towards the group center as shown in Formula 2.2.

~fatti (t) = ~fdrvi (t) + ~fgrpi (t) (2.2)

The driving force represents a pedestrian’s desire to reach a destination while traveling

at a certain speed. It is given by Formula 2.3, where v0i is the desired speed of the pedestrian,

~e0i is the desired direction of the pedestrian, ~vi is the actual velocity of the pedestrian, and

τi is the relaxation time to adjust to the desired velocity.

~fdrvi (t) =
1

τ i
(v0i ~e

0
i − ~vi) (2.3)

The group force represents a pedestrian’s desire to maintain close proximity to other

members of its group. It is given by Formula 2.4, where β represents the strength of the
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interaction and ~Ui is the unit vector pointing from the agent to the group’s center of mass.

q has a value of 1 if the distance between pedestrian i and the group’s center of mass is

greater than N−1
2 meters, or a value of 0 otherwise where N is the size of the group. The

threshold value N−1
2 is determined empirically in [35].

~fgrpi (t) = qβ~Ui (2.4)

Similar to the attraction forces, the repulsion forces can be further broken down into

repulsion forces from other pedestrians, ~fij(t) (see Formula 2.6), and repulsion forces from

obstacles, ~fobsi (t) (see Formula 2.7), as shown in Formula 2.5

~f repi (t) = ~fij(t) + ~fobsi (t) (2.5)

The repulsion force from other pedestrians is composed of three repulsive forces. An

isotropic force ~f isoij (t), an anisotropic force ~faniij (t), and a contact force ~f conij (t). The isotropic

force (directionally independent) is of equal value independent of the direction of the force

and has a short range of effectiveness. The anisotropic force (directionally dependent) has

greater weight when the pedestrians are in front of pedestrian, i, and has a longer range

of effectiveness. The contact force is isotropic but the range is limited to pedestrians close

enough to be in physical contact. The exact specification of these forces are found in [19].

~fij(t) = ~f isoij (t) + ~faniij (t) + ~f conij (t) (2.6)

Similarly, the repulsion force from obstacles is composed of two forces, an avoidance

force ~favdi (t) and a contact force ~f coni (t).

~fobsi (t) = ~favdi (t) + ~f coni (t) (2.7)

2.2 High-Level Navigation: Route Selection and Path Planning

High-level pedestrian navigation involves both route selection and path planning. In
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order to understand the process an agent uses in route selection and path planning, we

must first understand the representation for buildings which PLEASE uses and both the

type and amount of knowledge the agent has.

PLEASE allows users to load building layouts which are stored in a special XML

file. The XML file specifies where the rooms, corridors and walls are located, as well as

indicating the distribution of pedestrian in the different rooms. The XML file also identifies

the decision points in the building. A decision point is defined as point in the building

at which an agent must decide upon the next location in the route. These points may

be placed at arbitrary locations, but typically decision points are placed at doorways and

intersections. By only placing decision points at doorways and intersections, the placement

of the decision point does not require the pedestrian to pass through an area which they

would not normally pass through when navigating from one area of the building to another.

PLEASE provides agents with three types of knowledge: heuristic knowledge, learned

knowledge, and system knowledge. A brief overview of each of these types of knowledge is

given here. They are discussed in more detail in Chapters 3 and 4.

Pedestrians using local knowledge assign heuristic costs to known or visible decision

points, and then choose the decision point with the least cost. These costs are based upon

a variety of weighted factors including distance, congestion levels, number of neighbors

moving towards that location, corridor width, angles, and experience. The heuristics used

and the weights applied to each heuristic can be specified by the user. This technique does

not require any knowledge about the building to be given to the pedestrian agent other

than that knowledge which can be directly observed during the simulation.

Pedestrian agents can use previously learned costs to estimate the exit cost from a

decision point. PLEASE allows the agents to be trained using reinforcement learning in

a particular building before running the actual training. During the training, the agents

may learn distance costs, congestion levels, or other useful heuristic factors. The amount of

training an agent receives, and the type of information the agent learns can all be specified

by the user. Using reinforcement learning to simulate pedestrians with prior knowledge of
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a building is a novel application of the technique and does not require the user to manually

enter individualized pedestrian knowledge.

Finally, PLEASE can also provide agents with complete route distance information

and the current congestion levels along the route. This situation models a pedestrian

with access to an egress assistance device capable of providing such knowledge and can be

used to evaluate the effectiveness of such devices. Many simulation models provide agents

with complete route distance information.. The inclusion of complete, dynamic congestion

information is much less common, and to our knowledge, the effect such information has on

pedestrian egress has not been previously considered.

2.3 Coalition Formation

In addition to the two-tier navigation model, we implement a group formation model,

which allows pedestrians to form static and dynamic groups. Again, we provide a brief

overview of the model here, but details are given in Chapter 5. Static groups are only

formed at the beginning of the simulation. As the name implies, once the static group has

formed, the membership of the group does not change throughout the simulation. Static

groups represent family or social bonds that exist between pedestrians. Dynamic groups,

on the other hand, constantly change throughout the simulation. In PLEASE, dynamic

groups form based upon the principles of satisficing utility theory [13, 50, 54]. If an agents

expected utility is below a certain threshold, then the agent will seek to join or form a

group. PLEASE is extensible, so the function used to calculate an agents utility can be

easily changed. In chapter 5, we describe utility functions based upon the stress level or

knowledge level of an agent.
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CHAPTER 3

Pedestrian Route Selection with Imperfect Knowledge1

3.1 Introduction

In everyday life, pedestrians frequently utilize heuristics to make potentially compli-

cated decisions within an allotted time frame. These heuristics often allow a person to make

a reasonable decision without requiring extensive amounts of time and energy. However,

in some situations the heuristic or the data it relies on may not be valid and can lead to

poor decisions. In life threatening situations, the effective use of heuristics becomes even

more valuable. One example arises from the evacuation of a burning building. Selecting

the best route can mean the difference between life and death, but frequently insufficient

information is used in making this decision. Currently, detailed information about pedes-

trian egress from actual emergencies is not widely available, and thus it is too costly, too

dangerous, and impractical to determine what heuristics pedestrians use to select an egress

route when in emergency situations. Pedestrian simulation models have been designed to

address this problem.

Current pedestrian simulation models generally fall into one of two categories when

determining pedestrian route selection. Either the model assumes pedestrians have perfect

knowledge of the building layout and are thus able to select the best route, or the model

assumes that pedestrians only know about the immediately visible routes and must make

a decision based upon some heuristic [15, 39, 51]. Models which assume perfect knowledge

are clearly unrealistic for many situations as not all pedestrians will be familiar with any

given building layout. Yet models relying upon a heuristic may also be unrealistic in the

amount of information provided to pedestrians. Typically such heuristic models consider

1Feuz, Kyle and Allan, Vicki “Pedestrian Route Selection with Imperfect Knowledge” Condensed version
accepted for publication in the 4th International Conference on Agents and Artificial Intelligence 2012
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distance, congestion or social comparison for making the route selection decision. In this

paper, we show that using distance as the sole means of comparing visible routes leads to

poor egress times when the total route distances are unknown and is actually equivalent

to the shortest-leg first heuristic which Golledge found in [12] to be less preferred than

many other heuristics. Therefore, if total route distances are assumed to be unknown to

the pedestrians, then other route selection heuristics must be used to supplant the unknown

information.

Most models assume perfect distance information. According to Golledge, in observing

heuristics used in practice by actual pedestrians, shortest distance is the most frequently

used information. In traffic systems, perfect distance information is reasonable because road

signs often indicate the distance to a desired destination. In egress systems, perfect distance

information is not reasonable because there are no such distance signs and some exits may

be obstructed. Pedestrians must rely upon the perceived distance of routes (which may not

be accurate and cannot be known for previously unexplored or occluded routes). Therefore,

the lack of perfect distance information needs to be addressed with other heuristics.

In this paper, we consider the effect of various heuristic functions on pedestrian egress

time for a variety of different building layouts. Determining a comprehensive list of heuristic

functions, which pedestrians might use, is outside of the scope of this paper. However,

several common factors including distance, signage, corridor width, congestion/usage, and

common consensus are used to produce a variety of realistic heuristic functions.

3.2 Related Work

In [38], Ozel raises several pertinent questions regarding the issue of stress management

and the decision process. He suggests that pedestrians utilize various coping mechanisms

(heuristics) to make a decision in a time-pressured environment. In particular, the famil-

iarity of routes and the negative connotations of emergency exits are shown to have a large

impact on the route choice of pedestrians in an emergency.

Hoogendoorn and Bovy use distance and congestion heuristics for their route-choice

and activity scheduling model [23]. Gwynne et. al. indicate that pedestrians maintain
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social roles and norms even during emergency situations [14]. This may lead to pedestrians

choosing a different route based on the choices of their peers. Similarly, Fridman and

Kaminka develop a pedestrian simulation model based upon social comparison theory [11].

The simulation models MASSEgress, Simulex, and buildingEXODUS each use distance

as the primary factor in selecting an available exit [15, 25, 39, 51]. MASSEgress can be

configured to use other factors when selecting a route, and the agents will only select visible

routes. Simulex assumes the agents know all routes and the total distance of each route.

buildingEXODUS assumes the agents know about a set of user specified routes or all routes

in the absence of the specification. In each simulation model, the total distance of each

route considered is known by the pedestrian.

Golledge ranks the preference and prevalence of several different heuristic values pedes-

trians use in navigation and route selection in an outdoor environment such as a college

campus through the use of questionares and observations [12]. Table 3.1 summarizes the

rankings found by Golledge to be the most commonly used heuristics in pedestrian route

selection. These rankings indicate that pedestrians prefer routes which are direct, quick,

and easy to navigate with some preference being given to routes which are more aestheti-

cally pleasing. In emergency situations, one would expect the characteristics of directness

and quickness to remain prominent while the importance of scenery is irrelevant. Golledge

also found that the route selection criteria used differed for various route layouts and that a

combination of multiple criteria may give better results. Frankenstein et. al. create virtual

representations of various corridors to determine the effect of geometry on pedestrian route

selection and show that some of the same heuristics used for vehicle route planning are also

applicable to pedestrian route planning [10].

Other researchers focusing on the egress problem are concerned with building design.

Both Helbing and Hassan use modern evolutionary algorithm techniques to modify and

generate building layouts, which are more conducive to safe and efficient pedestrian egress

[16, 19]. Primarily, the algorithms are concerned with reducing congestion, increasing flow

rates, and decreasing the likelihood of trampling and crushing.
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Table 3.1: Ranking of criteria preference in route selection from [12]
Criteria (Heuristic) Rank

Shortest Distance 1

Least Time 2

Fewest Turns 3

Most Scenic 4

First Noticed 5

Longest Leg First 6

Many Curves 7

Many Turns 8

Different From Previous 9

Shortest-leg First 10

3.3 Heuristics

Our research evaluates a variety of heuristics.

3.3.1 Distance

Distance is a common heuristic used by pedestrians when making a route selection

and is the primary heuristic in many search based strategies [12, 23]. Unless motivated

by other factors, pedestrians will choose the route which has the shortest distance [12].

The distance heuristic is inapplicable in the absence of complete route distance knowledge

because missing data causes the distance relation to be a partial order.

3.3.2 Shortest-leg First

The shortest-leg first heuristic is a greedy distance heuristic. Rather than utilizing the

total route distance, shortest-leg first selects the route with the shortest distance to the

next decision point. Pedestrians only require distances to route goals which are within their

field of view.

3.3.3 Angle

Another common heuristic used by pedestrians when selecting a route is the least angle

heuristic [7, 22]. This heuristic selects the path which is closest in terms of angularity to a
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direct line between their current position and the final goal [4]. For example, in Fig. 3.1 the

agent would select Route B when using the least angle heuristic because it is the route whose

angle differs the least from the angle to the goal. Unfortunately, the end goal location(s) is

not always known. In such situations, the least-angle heuristic cannot be applied.

Figure 3.1: Depicts the values use to calculate the least-angle heuristic

3.3.4 Fewest Turns

We can modify the least angle heuristic to accommodate unknown goals by selecting

the closest path in terms of angularity to the current walking orientation. This new heuristic

is actually a greedy version of the fewest turns heuristic as it tries to minimize the number

of direction changes an agent makes while exiting from the building.

3.3.5 Signage

Most buildings include navigational signs to assist pedestrians in locating their desired

location [28]. These signs might include exit signs, emergency exits signs, room signs, or

navigational maps. Pedestrians then use these signs to navigate effectively through the

building. One might think that during an emergency evacuation pedestrians would look

for exit signs or emergency exit signs, but Ozel found that emergency exit signs often have

negative connotation and are avoided even in emergency situations [38]. Exit signs, on

the other hand, are commonly used by pedestrians in navigational planning when in an

unfamiliar building. Room signs can also be used in egress route planning as they indicate

that an egress route through a particular door is unlikely because individual rooms rarely

contain egress routes.
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3.3.6 Corridor Width

Main corridors tend to be preferred by pedestrians especially when navigating an un-

familiar building [21]. Like the relative width of various categories of roads, main corridors

are wider than auxiliary hallways so the width of the corridor or doorway can frequently be

an indication of a main route of travel leading to an exit.

3.3.7 Congestion/Usage

The number of pedestrians currently gathered around a location may be either a pos-

itive or a negative indicator of a desirable exit route [14, 27, 39]. It may indicate the route

is a good choice because others are using it. However, it may also indicate that another

route should be considered to avoid the congestion. Intuition suggests that if pedestrians

are unsure about the situation, they will follow others. If they are more confident and know

multiple routes, they will seek alternatives to avoid congestion.

3.3.8 Common Consensus

Unless the pedestrians are traveling in a group, they will not know the exact route

of nearby pedestrians. However, by observing the velocity and past movement, an agent

may predict the immediate destination of a neighboring pedestrian. Seeing agents who are

traveling in the same direction may bolster the confidence level of an agent in choosing a

particular route [38]. Traveling in the same direction as others is also easier as one does not

have to fight against the general direction flow, improving the overall pedestrain flow.

3.3.9 Past Experience

Pedestrians will typically choose routes with which they are familiar especially when

under time constraints [38]. Familiarity allows the pedestrian to feel more comfortable and

confident in the route selected and allows the pedestrian to concentrate on other cognitive

tasks. However, selecting a new route may or may not lead to a better solution. When the

current known route cost is within an acceptable limit, pedestrians are unlikely to change.
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The cost of a route may be based upon any number of factors such as distance, congestion,

time, and so on.

3.4 Simulation Environment

This study is performed using the Pedestrian Leadership and Egress Assistance Simu-

lation Environment (PLEASE). PLEASE is built upon the multi-agent modeling paradigm

where each pedestrian is represented as an individually rational agent capable of perceiving

the environment and reacting to it. In PLEASE, pedestrian agents can perceive obstacles,

hazards, routes, and other agents. The agents use a two tier navigational module to control

their movement within the simulation environment. The high-level tier evaluates available

routes and selects a destination goal. The low-level tier, based on the social force model [19],

performs basic navigation and collision avoidance.

PLEASE implements several of the heuristics outlined in Section 3.3. Here we describe

the implementation details used for the heuristics of interest. Many simulation models

assume that total route distance is known and/or the end goal location is known for at

least some subset of the available routes. However, in this paper, we are interested in the

case when no additional information, beyond what is immediately visible to the pedestrian,

is provided. For this reason, the distance, angle and past experience heuristics are not

considered.

Each heuristic can potentially be combined with any other heuristic. To facilitate the

integration of multiple heuristics, all heuristic values are normalized so that the unweighted

cost falls between 0 and 1.

The leg cost of route x, L(x), is given by Formula 3.1 where wl is the weight applied

to the shortest-leg heuristic, and di,x is the distance from agent i to route goal x. The

distance is normalized using the maximum distance between two points on the simulation

map. Agents in the simulation are able to accurately estimate the distance to visible points

within the simulation model. The distance to locations which are occluded by walls or other

obstacles cannot be estimated without prior knowledge.
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L(x) =
wl ∗ di,x

(maxDistance)
(3.1)

The turn cost of route x, T (x), is given by Formula 3.2, where wt is the weight applied

to the fewest turns heuristic, and ai,x is the angle in radians between the orientation of

agent i and the direction to route goal x from agent i. π acts as the normalization factor

since no angle will be greater than π. See Figure 3.2 for an example.

T (x) = wt ∗ ai,x/π (3.2)

Figure 3.2: Depicts the values used to calculate the angle heuristic

The signage cost of route x, S(x), is given by Formula 3.3, where ws is the weight

applied to the signage heuristic, and getExitWeight(x) is the cost associated with the

given signage value. getExitWeight is a simple lookup table which takes the signage of a

route and looks up the user-specified cost of that sign. A user may enter any arbitrary sign

cost, but by default, PLEASE uses the cost shown in table 3.2. To be consistent with the

other heuristics, cost should be specified as a value between 0 and 1.

S(x) = ws ∗ getExitWeight(x) (3.3)

Table 3.2: Signage costs used by default in PLEASE
Sign Type Cost

Emergency Exit 0.25

Exit 0.0

Room 1.0

None 0.5
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The simple signage cost of route x, SS(x), is given by Formula 3.4, where wss is

the weight applied to the simple signage heuristic, and getSimpleSignage(x) is the cost

associated with the simple signage of route x. A route has a simple signage cost of 0 if the

doorway of the route is a direct exit and is marked with an exit sign. All other routes have

a simple signage cost of 1. This causes a pedestrian to ignore all building signage except

for exit signs over direct exits. The simple signage heuristic allows us to compare the effect

that different amounts of building signage and different levels of attention to the building

signage have upon the egress times of pedestrians.

SS(x) = wss ∗ getSimpleSignage(x) (3.4)

The width cost of route x, W (x), is given by Formula 3.5, where ww is the weight

applied to the corridor width heuristic, and getCorridorWeight(x) is the cost assigned to

the given corridor width. The getCorridorWeight is a lookup table which takes the width of

a route and returns the user-specified cost for that width. A user may enter any arbitrary

width cost, but by default, PLEASE uses the costs shown in table 3.3. To be consistent with

the other heuristics, cost should be specified as a value between 0 and 1. Although corridor

width is a real number and can have an infinite number of values, the getCorridorWeight

discretizes width into three categories, small, medium and large. This is done to eliminate

meaningless differences between corridors. Two corridors which differ only slightly in width

are equally likely to indicate a main route and should be treated equally. The cutoff values

for these categories can be set by the user so that the values are appropriate for the current

building layout. By default, PLEASE uses the values shown in table 3.4. Agents in the

simulation measure width at the entry point of the corridor.

W (x) = ww ∗ getCorridorWeight(x) (3.5)

The congestion cost of route x, Cong(x), is given by Formula 3.6, where wcg is the

weight applied to the congestion heuristic, spi is the desired speed (a normally distributed
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Table 3.3: Width costs used by default in PLEASE
Width Cost

Small 1.0

Medium 0.5

Large 0.0

Table 3.4: Width discretization cutoff values used by default in PLEASE
Discretization Cutoff

Small 1.5 m

Medium 2.5 m

Large >Medium

parameter value unique to each pedestrian) of pedestrian i, spj is the speed of pedestrian j,

s1 is 1 if spj < spi or 0 otherwise, np,x is the number of pedestrians along route x, and np

is the total number of pedestrians. This formula assigns cost based upon the desired speed

of the pedestrian and the current speed of pedestrians along the selected route. For each

pedestrian along the selected route, if their speed is slower than the desired speed, then a

cost is incurred relative to the speed difference. The cost is raised to the square so that

smaller speed differences count less than larger differences. Finally, the result is normalized

by the worst case cost (i.e. if every pedestrian in the simulation was along the selected

route and was not moving).

Cong(x) = wcg ∗

np,x∑
j=0

((spi − spj) ∗ s1)2

spi ∗ np
(3.6)

The consensus cost of route x, C(x), is given by Formula 3.7, where wc is the weight ap-

plied to the consensus heuristic, aj,x is the angle between pedestrian j’s orientation and the

direction to route goal x from agent j (see Figure3.2), and np,i is the number of pedestrians

surrounding pedestrian i.
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C(x) = wc ∗

np,i∑
j=0

(aj,x/π)

np,i
(3.7)

The previously visited cost of x, V (x), is given by Formula 3.8, where wv is the weight

applied to the visited heuristic, and visitedCount(x) is the number of remembered times

route x has been visited by the pedestrian in this simulation run. Each pedestrian is capable

of remembering a specified limit of number of routes for a specified amount of time to reflect

the finite memory of pedestrians. These limits may be set to any arbitrary value by the

user, but by default, PLEASE has a limit of 10 routes for 1000 seconds.

V (x) = wv ∗ visitedCount(x)/maxMemory (3.8)

3.5 Experimental Design

To test the effectiveness of the various heuristics described above, we use a combina-

tion of actual building layouts and building layouts constructed for the purpose of these

experiments. In the buildings shown in Figure 3.3, blue lines represent walls of the build-

ings, dashed green lines represent exits signs, solid red lines represent emergency exit signs,

and wavy gold lines represent door signs. The USU Business building (see Figure 3.3(a))

is an approximation of the ground floor of the actual building found on the Utah State

University Campus. Likewise, the CSULB FM building (see Figure 3.3(c)) and the CSULB

UP building (see Figure 3.3(b)) are approximations of the actual buildings found on the

California State University, Long Beach campus.

The USU Business building and the CSULB UP building are used because the floor

plans follow expected conventions: rooms do not function as hallways, main areas have wide

corridors, and other accepted conventions are followed. The CSULB FM building is used

because of the lack of convention with room placement. Rooms are found within rooms and

several rooms can even function as hallways. The custom building is designed to represent

a standard building. The corridor widths are not an exact indication of main routes and

areas, but are still closely correlated to main routes. Rooms do not function as hallways.



21

(a) USU Business Building
Floor 1

(b) CSULB UP Building (c) CSULB FM Building

(d) Simple Building (e) Custom Building

Figure 3.3: Building layouts used in the heuristic evaluation experiments.

The number of rooms and routes are not so many as to be completely unmanageable by

pedestrians either. Finally, the simple building is designed for ease of navigation. Navigating

this building should be relatively simple so heuristics which lead to prolonged egress times

in this building are indicative of a problem.

For each building, we conduct a variety of tests. We measure the total egress time of

100 pedestrians, randomly distributed throughout the rooms, averaged over 20 simulations

using a single active heuristic. In all the tests, the previously visited heuristic is always

active and is given a weight of five. This represents the agents’ unwillingness to backtrack

along a route previously traveled.

The viability of the signage heuristic is completely dependent upon the type and amount

of signage found with the buildings. For this reason, a comparison between the signage

and simple signage heuristics is helpful. The simple signage heuristic represents the same

building stripped of all signs except for exit signs at actual exit doorways.
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Based upon the performance of the individual heuristics, we then combine multiple

heuristics, weighting each heuristic by its relative performance in relation to the total egress

time achieved by the heuristics. These weights are then adjusted to further improve the

performance of the combined heuristics. The weight values for these experiments are shown

in table 3.5. Determining the exact weight specification to optimize performance when

multiple heuristics are used is outside of the scope of this paper. However, the weights

which are used provide good performance. Values of the parameters are easily modified.

Table 3.5: The heuristic weight values used when combining multiple heuristics.
Heuristic Weight

Shortest Leg 0.5

Simple Signage 1.0

Width 0.5

Congestion 3.0

3.6 Results and Analysis

In this section, we discuss the results of the experiment in four parts. First, we look

at the effect of building layouts on egress times. Second, we consider in detail the result of

applying only one heuristic at a time. Third, we look at the results of applying multiple

heuristics simultaneously. Fourth, we rank each heuristic using a relative performance ratio.

3.6.1 Building Layouts

The USU Business building and the CSULB UP building have similar results for most

of the heuristics (see Figure 3.4). This makes sense because both buildings have similar

design characteristics. The main differences in heuristic performance occurred with the

shortest-leg heuristic. The USU Business building layout happens to be conducive to using

the shortest-leg heuristic. The outside rooms can actually be used as hallways which lead

directly to the exits, and this is exactly what happens when the shortest-leg heuristic is

used. The ground floor of the USU Business building layout appears similar to the custom

building layout, yet the slight differences in spacing and room layout create large differences

in egress times for the two buildings.
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Figure 3.4: Effect of building layout on heuristic effectiveness. Performance ratio is cal-
culated as the average time taken for 90% of the pedestrians to evacuate using the given
heuristic divided by the average time taken for 90% of the pedestrians to evacuate using
perfect knowledge.

The CSULB FM building and the custom building both have similar results in egress

times for the shortest-leg, signage, congestion and random heuristics. Although the actual

layouts of the building are quite different, the underlying patterns are similar: width corre-

lates with egress routes, long hallways have many adjoining rooms, and exits are distributed

in a uniform manner. The main difference between the results for each building is the per-

formance of the width heuristic. In the CSULB FM building, corridor width corresponds

closely with egress routes, while in the custom building the correlation is weaker. The

simple signage heuristic also yields different results in these two buildings. In the custom

building, the top left and top right exits are not visible throughout most of the building

and are thus highly underutilized. Meanwhile, the exits in the CSULB FM building have a

much higher level of visibility throughout the building and are used more effectively.

The simple building also has different egress times compared to the other buildings.

This building layout is simple and has few route choices. Thus, which route selection

heuristic is applied makes little difference. The exception to this is the distance heuristic

which causes extreme congestion around the inner room doorway because a large percentage

of the pedestrians are closest to that route as the inner doorway is situated near the center

of the building making it the closest visible route to the majority of pedestrians in the

simulation.
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3.6.2 One Heuristic

When only a single heuristic is used, the results vary greatly between heuristics (see

Figures 3.5(a)-3.5(e)). The signage heuristic performs well in all types of building layouts

tested. This suggests that if pedestrians choose an egress route based upon well-designed

signage, pedestrians can efficiently egress from a building even when completely unfamiliar

with the layout of the building. Using simple signage, the egress times are still as good as

or better than any other heuristic in the building layouts considered. This highlights the

importance of even minimal building signage in assisting in pedestrian egress.

The shortest-leg heuristic leads to slow egress times in almost every building layout

considered. In many instances, the shortest-leg heuristic does not even outperform a random

choice policy. As discussed in Section 3.3, when the end goal is not known, choosing the

route which is closest to the pedestrian becomes the shortest-leg first heuristic. This greedy

route selection heuristic provides no guarantee that the route chosen will even lead to a

direct exit. Additionally, when distance is the sole means of evaluating a route, congestion

is a common occurrence. Pedestrians who are closest to a given doorway will select that

doorway regardless of what side they are on or which direction other pedestrians are moving.

Thus, the pedestrians on opposite sides of the doorway will converge at the doorway causing

a bottleneck, and pedestrian flow rates through the doorway will be greatly inhibited. This

is exactly what happens in the simple building and is the reason for the extremely delayed

egress times (see Figure 3.5(e)). Interestingly, the shortest-leg heuristic performs remarkably

well in the USU Business Building (see Figure 3.5(a)). This building is configured ideally

so that greedily selecting the closest visible route actually leads pedestrians to an exit in a

fairly efficient manner. One reason that this is the case is the double doors on most of the

rooms. This allows the pedestrian to explore routes without having to backtrack, which

is discouraged by the algorithm. Additionally, the end rooms have doorways adjacent to

exits, which facilitates egress in this situation.

Similar to the shortest-leg heuristic, the fewest turns heuristic also leads to poor per-

formance. The results are not shown here. The intuition behind the fewest turns heuristic is



25

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

P
e
rc

e
n
t

E
v
a
c
u
a
te

d

Time (seconds)

Effect of Heuristics on Evacuation Time
100 Pedestrians in USU Business Building

shortestLeg
signage

simpleSignage
width

congestion
random

(a) USU business building heuristics re-
sults

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

P
e
rc

e
n
t

E
v
a
c
u
a
te

d

Time (seconds)

Effect of Heuristics on Evacuation Time
100 Pedestrians in CSULB FM Building

shortestLeg
signage

simpleSignage
width

congestion
random

(b) CSULB FM building heuristics results
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(c) CSULB UP building heuristics results
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(d) Custom building heuristics results

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
e
rc

e
n
t

E
v
a
c
u
a
te

d

Time (seconds)

Effect of Heuristics on Evacuation Time
100 Pedestrians in Simple Building

shortestLeg
signage

simpleSignage
width

congestion
random

(e) Simple building heuristics results

Figure 3.5: Resulting egress times when agents use a single heuristic function to select an
egress route.

to select a route that is as direct as possible. However, considering only the next route goal

is too short-sighted and leads to routes which are drastically less direct than they could be.

Without prior knowledge about the building layout, though, this short-sightedness cannot

be overcome.

For the building layouts considered in this paper, the width heuristic leads to average

egress times when compared to the other heuristics. For the simple building, the width
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heuristic actually leads to excellent egress times as the widest route is also the best exit.

For the CSULB-FM building, choosing the widest route leads to finding an exit sooner than

selecting a route by any other heuristic except for signage. In the remaining buildings,

the width heuristic performs worse than the congestion heuristic, but still significantly

outperforms a random policy.

The congestion heuristic does not necessarily provide an indication of which route

leads to an exit, especially when none of the pedestrians have any knowledge regarding

the building layout. However, avoiding congestion still improves the overall egress time

by helping prevent bottlenecks and increasing the overall smoothness of pedestrian flow.

This allows more routes to be explored in less time, which leads to better egress times.

Although (due to space limitations) the results are not shown here, the consensus heuristic

also relieves congestions at bottlenecks and improves pedestrian flow so that routes can be

explored in a more efficient manner. The consensus heuristic would most likely prove to

be more valuable if some pedestrians have additional knowledge about the building layout.

If other pedestrians imitate the route selection behavior of their peers using the consensus

heuristic, not only would the smoothness of pedestrian flow increase, but also the pedestrians

would be able to take advantage of the additional knowledge other pedestrians might have.

To be most effective, the congestion and consensus heuristics should be combined with

another heuristic such as width or signage which provide an indication of an egress route.

3.6.3 Multiple Heuristics

After considering each heuristic individually, we then combine several heuristics to

further improve performance (see Figure 3.6). Although many different combinations could

be tried, in this paper, we consider combining the simple signage and width heuristics

(SS-W) and the shortest-leg, simple signage, width, and congestion (S-SS-W-C) heuristics.

When width is the sole heuristic applied, the egress times are too slow to be reliable in

an emergency. The simple signage heuristic is also slower than desired but is still the best

alternative to the signage heuristic (which may not be realistic for many buildings) when

only a single heuristic is applied. The goal of combining width and signage is to take
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tics results
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Figure 3.6: Resulting egress times when agents combine multiple heuristics values into one
heuristic function.

advantage of the signage when available and to fall back on the width heuristic when the

signage is not available . We then include the other heuristics, namely shortest-leg and

congestion, to further improve the egress times. For comparison purposes, the egress times

of the signage, simple signage and width heuristics are included in the charts.

As can be seen in Figure 3.6, combining the simple signage and width heuristic (SS-W)
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did indeed improve performance in most buildings in comparision to either heuristic alone.

The custom building layout is the one exception. In this building, falling back on width

proved to be detrimental to the overall egress time as the widest areas did not have direct

exits. However, when several heuristics (shortest-leg, simple signage, width and congestion,

denoted as S-SS-W-C) are combined, performance is improved in every single building layout

when compared to the performance of the heuristics separately. In most cases, the egress

times matched or beat selecting routes based upon perfect signage. This indicates, that

for a wide variety of buildings, the same heuristic functions can be applied to successfully

egress from the building in a reasonably efficient manner using only the information which

is directly perceivable by the pedestrian.

Although the shortest-leg heuristic did not perform well by itself, when combined with

other heuristics, it leads to improved performance (results omitted due to space limitations).

This is indicative of the value distance can play in route selection and justifies its use by

actual pedestrians. However, it is important to note the disastrous impact which relying

only upon distance can have upon the total egress time of individual pedestrians when no

additional information is utilized.

3.6.4 Heuristic Rankings

The heuristic functions are ranked according to the relative performance ratio (RPR)

of each heuristic in the above mentioned building layouts. For each building, the average

time (t) it takes for 90% of the pedestrians to evacuate when each pedestrian has perfect

knowledge of route distances and congestion levels is recorded. The average time (h) it

takes for 90% of the pedestrians to evacuate when each pedestrian is using the heuristic

function of interest is also recorded. The RPR of each heuristic function is then computed

as h/t. Table 3.6 displays the average relative performance ratio for each heuristic.

3.7 Future Work

While several directions of future work are possible we propose the following list as key

questions needing to be answered.
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Table 3.6: Ranking of heuristic functions by relative performance ratio (RPR). A lower
RPR signifies better egress times.

Heuristic RPR

signage 1.4364796

S-SS-W-C 1.5929914

SS-W 2.7136588

simpleSignage 2.8858816

width 3.6199478

congestion 4.29597

consensus 4.645231

random 7.6032004

shortestLeg 8.1949452

angle 9.4109684

1. In large buildings, could a pedestrian familiar with heuristics which work well in one

area of the building apply the same heuristics in another area of the building to

successfully egress from the building?

2. In this work we combined four heuristics, the shortest-leg heuristic, the signage heuris-

tic, the width heuristic and the congestion heuristic. What other combinations are

effective?

3. Which heuristic functions and weightings provide the most realistic egress results for

emergency and non-emergency situations?

4. All the building layouts we considered are single story floor plans. How does the

addition of multiple stories affect the heuristic functions used? Which floors have

exits? How does stairway width come into play? Do pedestrians move first toward

the relative exit location and then to the correct floor, or do they move first to the

correct floor and then to the exit location?

3.8 Conclusion

Using heuristic estimations in selecting an egress route is a natural and common process

performed by pedestrians on a daily basis, yet most simulation models do not adequately
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address this fact. This paper highlights the importance of including heuristic costs in pedes-

trian simulators, especially those designed to model egress in an emergency situation. As

Ozel indicates in [38], when in stressful situations and under time constraints, pedestrians

will react by filtering and bolstering information (i.e. relying more upon heuristic estima-

tions). This leads to decisions which are sub-optimal and, as shown, can have a significant

impact on the total egress time of the simulation. In emergency simulation models, it is

not sufficient to assume pedestrians will make the best or even good choices, the simulation

model needs to consider the possibility that pedestrians are forced to make split-second

decisions with little information.

Golledge and others have shown that pedestrians frequently use distance as the primary

heuristic in route selection. Many pedestrian simulators also use distance as the primary

factor when selecting a route for pedestrian egress. However, when the total distance is

unknown, using a greedy strategy of selecting the closest route available is seen to produce

poor results in many circumstances. If additional factors are included in the decision, then

the distance heuristic can help improve egress times, even when the total distance is not

known.

Using four main heuristics (the shortest-leg heuristic, the simple signage heuristic,

the width heuristic and the congestion heuristic, each appropriately weighted) is shown to

produce good egress times even when no information about the building layout is known

before the simulation begins. If only a single heuristic is used, the signage heuristic gives

the best results even when the amount of building signage is minimal.
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CHAPTER 4

Simulating Knowledge and Information in Pedestrian Egress1

4.1 Introduction

In recent years, accurate pedestrian simulation has become an important research

topic [19, 23, 39, 48]. Pedestrian simulation models can be employed in the design of safe

facilities, validation of fire codes, and the automatic tracking and surveillance of pedestrians

in live video feeds [1]. An important area affecting the accurate simulation of pedestrians

is the route/path selection algorithm. Many different techniques are used such as assuming

perfect knowledge of egress routes and applying standard search and planning techniques,

or generating a distance (cost) lookup table for each route choice. Other methods assume

no prior knowledge of the possible routes or the building layout. Pedestrians can then only

choose from those routes that can be locally observed by the pedestrian. While common,

these methods are not an accurate representation of actual practice. Rarely would a pedes-

trian have complete knowledge of a building. Yet, having no prior knowledge about the

building is also unrealistic for most cases. A few simulators allow route knowledge to be

entered manually by the user to simulate different route knowledge for different pedestri-

ans [15, 41], which may require a large time commitment by the user to properly set up

the environment. In this paper, we propose a novel application of reinforcement learning

to provide pedestrians with individualized knowledge of the building without requiring a

large time commitment from the user. Pedestrians can learn about the environment in an

initial learning phase, and then the actual simulation can be run with different pedestrians

having learned various routes.

1Feuz, Kyle and Allan, Vicki “Simulating Knowledge and Information in Pedestrian Egress” Condensed
version accepted for publication in the 4th International Conference on Agents and Artificial Intelligence
2012
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Another factor which can affect route selection is congestion. The use of reinforcement

learning to supply pedestrian agents with prior knowledge about the building can also

be extended to include additional knowledge such as the average congestion levels of the

different routes. Using this technique, we can analyze the effect that utilizing congestion

knowledge has upon the egress time and efficiency of the simulation. In traffic management,

studies conflict as to whether or not providing dynamic information about traffic congestion

conditions improves the efficiency of the road network. Some studies indicate that providing

such information can lead to road usage oscillation patterns as drivers switch between two

alternate routes [52, 53]. To our knowledge, the question of the effectiveness of providing

congestion information has yet to be answered regarding pedestrian egress. The effect

of learning typical congestions levels in a building prior to the actual simulation is also

unanswered. In this paper, we seek to fill these gaps by analyzing the effect of incorporating

dynamic route congestion information and learned route congestion information into the

route selection algorithm.

4.2 Related Work

Reinforcement learning has been studied extensively for several decades [26]. Different

algorithms and techniques have been developed, each with benefits and drawbacks. In

general, reinforcement learning algorithms can be divided into two broad categories: model-

free learning and model-based learning. The main difference between these two techniques

is that in model-based learning, an agent learns about both the transition relationship

between states and the reward function, whereas in a model-free technique, an agent only

learns about the reward function. For a good survey of reinforcement learning algorithms,

consult [26].

Less studied, but receiving more attention recently, is reinforcement learning in multi-

agent systems. One of the most influential works in multi-agent reinforcement learning

is [31] by Littman. He extended the q-learning algorithm to adversarial zero-sum Markov

games. Since this initial work, other algorithms for learning in cooperative environments

have also been developed [6,32]. One of the challenges with multi-agent learning arises from
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the moving target problem [5]. Because each agent is learning simultaneously (and decisions

by one agent affect desirable choices by others), the optimal policy may change over time. In

addition to new algorithms, in some situations, multi-agent learning can ignore the presence

of other rational agents and employ a traditional single-agent learning technique.

The effects of dynamic congestion information in traffic management is a well-studied

topic which has not yet received much attention in pedestrian situations. Dia provides a

framework for simulating driver behavior with dynamic route information. He leaves as an

open question what effect such information will actually have upon route selection behavior

[8]. Wahle et al. study the effect of dynamic congestion information in traffic scenarios [52,

53]. They use simulation models to predicate the effect that different congestion messages

will have upon traffic congestion. Their findings indicate that the results are dependent upon

the type of information provided, but in general, dynamic information tends to decrease

the overall network efficiency as oscillation patterns of road usage develop. Roughgarden

shows that selfish routing does not minimize the total latency of a network and provides

bounds upon the cost of selfish routing for several different latency functions and network

topologies [45, 46]. However, using game-theory, Helbing et al. discover the emergence of

alternating cooperation as a fair and system-optimal road usage behavior in a route choice

game [20]. They conduct empirical tests using an iterated 2-4 player route choice game.

Cooperation tends to emerge when individuals also exhibit exploratory behavior. They do

not consider the case of providing dynamic information about the road conditions.

Although dynamic congestion information has not been heavily applied to pedestrian

simulation, several researchers have included congestion consideration while modeling pedes-

trian egress. The work of Hoogendoorn and Bovy includes the cost of congestion when

selecting routes and activities to perform [23]. The congestion information can either be

derived from the pedestrians current perceptions or it can be based upon future predictions

of congestion levels. How this information affects the overall efficiency of the system is not

discussed. Banerjee et al consider the complexity issues of dynamically discovering con-

gestion and rerouting agents accordingly [2]. Their model assume complete route distance
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information is known to pedestrians and that only pedestrians which perceive the conges-

tion will choose new routes. This is in contrast to our model where route information may

not be known and where congestion may be known or estimated from previous experience

even when the actual congestion cannot be directly perceived.

Pan represents one of the more comprehensive pedestrian behavioral models [39,40]. He

includes pedestrian characteristics such as competitive, leader-following, altruistic, queuing,

and herding. Using these characteristics, an agent considers visible routes before identifying

its currently preferred route. Similarly, Koh, Lin, and Zhou [27] define an agent which only

considers congestion and obstructions which can be directly perceived by the agent. How-

ever, knowledge of the location of the end goals appears to be available to all pedestrians.

A common simulation environment, buildingEXODUS, assumes the agents know about a

set of user specified routes or all routes in the absence of the specification [15]. VISSIM, a

commercially available pedestrian simulator, first processes the building layout to generate

perfect route information for the pedestrians [41]. In VISSIM, the user also has the option

of specifying specific routes for specific pedestrian sets [41].

4.3 Simulation Environment

Our study is performed using the Pedestrian Leadership and Egress Assistance Simu-

lation Environment (PLEASE). PLEASE is built upon the multi-agent modeling paradigm

where each pedestrian is represented as an individually rational agent capable of perceiving

the environment and reacting to it. In PLEASE, pedestrian agents can perceive obstacles,

hazards, routes, and other agents. The agents are capable of basic communication to allow

for the formation and dissolution of coalitions and the sharing of knowledge. The agents

use a two tier navigational module to control their movement within the simulation envi-

ronment. The high-level tier evaluates available routes and selects a destination goal. The

low-level tier, based on the social force model [19], performs basic navigation and collision

avoidance.
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4.3.1 Knowledge representation through Reinforcement Learning

Typically, reinforcement learning algorithms are used to discover a near-optimal policy.

In fact, many reinforcement learning algorithms provably converge to the optimal policy [26].

One benefit of reinforcement learning to our simulation is the fact that when the search is

truncated, a less than perfect solution is found. These solutions can be used to automatically

generate various levels of pedestrian knowledge about the building configuration. These sub-

optimal policies do have a unique constraint though as well: they must still be realistic. A

learned policy which (when followed) never results in the successful egress of the agent is

unacceptable. For this reason, we have implemented the reinforcement learning algorithm

using model-based techniques. The details of the implementation follow.

Each agent builds a model of the building layout and the associated costs of available

routes. To do this, the agent abstracts the building layout into a graph-based view. A

common abstraction of building layouts is to represent rooms as nodes in the graph and

doorways between rooms as edges in the graph. For the purpose of reinforcement learning,

however, this abstraction is too course-grained. An agent is forced to associate a single

cost (the edge weight) between two arbitrary, connected rooms. The true cost actually

varies significantly depending upon the agent’s location in the room. If time and space

consideration are ignored, the building can be discretized into arbitrarily small grid cells,

which allows the cost between nodes to be represented more accurately. Of course, this

method is too costly in terms of time and space to be practical for buildings of even modest

size. PLEASE uses a building representation in between these two extremes. To do this, we

introduce the concept of decision points. A decision point is simply a point in the building

at which an agent must decide in which direction he will proceed. These points may be

placed at any arbitrary location, but in our models, the decision points are always placed

at doorways and corridor intersections. We select these locations because they are areas

which pedestrian must pass through to move from one area of the building to another. This

prevents the systems from forcing a particular path upon an agent. The nodes in the graph

represent decision points in the building, and weighted edges between nodes represent the
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average cost of a path between two decision points. This provides more fine-grained control

over the costs learned while still being manageable for larger buildings.

Pseudo-code for the learning algorithm is shown in Figure 4.1. Initially, the agent’s

model is empty as the agent has no prior knowledge about the building. Each time an agent

passes through a decision point, the agent estimates the cost (based upon distance and/or

congestion levels) to all other visible decision points in the room. (See Formula 4.1-4.3).

Additionally, the agent estimates the cost to other decision points known by the agent to

be in the room. The weighted edge between decision points is then updated to reflect the

newly estimated costs. Decision points which are not currently represented in the graph

are added as necessary.

Definitions:
model - the adjacency matrix for the building layout representation
d - the decision point whose cost is being updated
dp - decision points in the same room as d
alpha - learning parameter of the algorithm, determines the weight applied to new cost
estimates
estimateCost - estimates the cost between two decision points. See Formula 4.1 - 4.3
model.insert - inserts new rows and columns into the adjacency matrix as needed

Begin UpdateCost(DecisionPoint d)

foreach DecisionPoint dp in room

if dp isVisible or isKnown

cost = estimateCost(d, dp)

if d, dp in model

tmp = alpha * (cost - model[d][dp])

model[d][dp] += tmp

model[dp][d] += tmp

else

model.insert(d,dp,cost)

End

Figure 4.1: Algorithm used by the learning agent to update the estimated cost between
decision points

The agents estimate the cost from one point in the building (dp1) to another point in the

building (dp2) based upon the distance and congestion levels between the two points. This

estimate is specified by Formulas 4.1-4.3, where cost is the estimated cost of moving from

dp1 to dp2, wcg is the user-specified weight for congestion costs, wd is the user-specified
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weight for distance costs, spi is the desired speed of the current pedestrian i, spj is the

current speed of agent j, ndp1,dp2 is the number of agents along the path from dp1 to dp2,

N is the total number of agents, s1 is 1 if spj < spi and 0 otherwise, dist(dp1, dp2) is the

distance between dp1 and dp2, and maxDistance is the maximum distance between any

two connected decision points which is defined as the length of the diagonal of the building.

Both the distance cost and the congestion cost are weighted by user-specified param-

eters so that different relative weights can be chosen. Agents in the simulation are able

to accurately estimate the distance to visible points within the simulation model as well

as being able to estimate the distance to points which they have previously visited. The

distance is normalized using the maximum distance between two points on the simulation

map. The congestion cost is estimated using the difference in speeds between the current

pedestrian and other pedestrians that exist between the two points in the building. For

each pedestrian along the selected route, if its speed is slower than the desired speed of the

pedestrian, then a cost is incurred relative to the speed difference. The cost is raised to

the square so that smaller speed differences count less than larger differences. Finally, the

result is normalized by the worst-case cost (i.e. if every pedestrian in the simulation was

along the selected route and was not moving).

DistCost =
wd ∗ dist(dp1, dp2)

(maxDistance)
(4.1)

CongCost = wcg ∗

ndp1,dp2∑
j=0

((spi − spj) ∗ s1)2

spi ∗N
(4.2)

cost = CongCost+DistCost (4.3)

At this point, the agent must select the next route to follow. Pseudo-code for the

route selection algorithm is shown in Figure 4.2. To do this, the agent performs a breath-

first search starting from each known decision point (dp) in the current room. If a path is
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found from the decision point to an end goal (g), the cost of the path is computed as the

cost to dp plus the learned cost from dp to g. If no path is found to g, then the cost is

computed as the cost of d plus UNEXPLORED COST . UNEXPLORED COST is a

user-specified parameter representing the cost of choosing a route whose destination is not

known. With probability p, the agent selects a random decision point to proceed towards,

and with a probability of 1 − p, the agent selects the decision point of least cost. The

probability factor represent the probability an agent chooses to explore a different route.

When the agent is learning we set this probability to 0.15. This value will reflect the speed

with which agents learn a building. When learning congestion cost, this value will also

affect the reliability of the learned congestion costs. Agent training happens concurrently

for all agents in the simulation. This creates a moving-target problem because congestion

levels are constantly fluctuating as agents change their respective policies based upon the

congestion levels encountered previously. When the probability of exploring is high, a large

number of agents will not be using routes they normally would if they were not exploring

which leads to inaccurately learned congestion costs.

Definitions:
dp - decision point in the current room to consideration
explore - normally distributed random value between 0-1
p - probability of exploration
cost - dictionary of costs for decision points considered
estimateCostTo(dp) - similar to estimateCost in Figure 4.1 but uses the agents position as
dp1
BFSCost(dp) - the cost found by performing a breadth-first search from dp to the end goal

Begin routeSelection()

foreach DecisionPoint dp in room

cost[dp] = estimateCostTo(dp) + BFSCost(dp)

explore random()

if explore <= p

return random DecisionPoint in room

else

return arg min cost[dp]

End

Figure 4.2: Algorithm used by the agent to select the desired route of travel
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4.4 Congestion Considerations

As we are interested in the effects of congestion on the egress efficiency of the system,

we consider the two cases: 1) ignore current congestion levels and 2) adjust decisions based

on directly perceived congestion.

4.4.1 Ignore Congestion

We use the case of ignoring congestion as a base case against which we can compare all

other cases. For many situations, we expect that completely ignoring congestion will lead

to slower egress times as the building corridors are used inefficiently. However, ignoring

congestion is still a feasible pedestrian behavior. Generally, pedestrians prefer to travel

along paths they have previously traveled [38]. This may mean that, in spite of congestion,

they continue to travel along their preferred route. Congestion might also be ignored if the

pedestrian believes that other routes will not decrease their egress time.

4.4.2 Adjust to Directly Perceived Congestion

Adjusting to directly perceivable congestion is common in many simulation mod-

els [23, 27]. Intuitively, it makes sense that pedestrians adjust their route based upon

perceived congestion. From a modeling perspective, this case has the additional benefit of

not requiring any additional knowledge about congestion in other areas of the building. The

question remaining is, ”Does it improve the overall egress times?”

4.5 Knowledge Considerations

We are interested not only in the effect of reacting to congestion upon egress times,

but also in the effect congestion knowledge has upon egress times. We consider three

types of knowledge which pedestrians may have: 1) learned route distance knowledge 2)

learned route congestion/distance knowledge, 3) system-provide route congestion/distance

knowledge.
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4.5.1 Distance Knowledge

The case of route distance knowledge represents pedestrians who have learned route

distances but not route congestion levels. These pedestrians primary concern is arriving at

the destination rather than the congestion levels along the way. The completeness of the

distance knowledge which a pedestrian has is dependent upon the amount of training the

agent has. In this paper, we consider agents with both low knowledge (10 training runs)

and high knowledge (100 training runs).

4.5.2 Congestion Knowledge

Knowledge of the average congestion costs is more reflective of reality as pedestrians

familiar with a building are also typically familiar with the route usage patterns. This

case assumes that pedestrians remember congestion costs from previous experience in the

building in addition to the distances between various decision points. In this case, the

congestion costs are associated with routes between decision points. Each time an agent

travels a given route, the expected cost for that route is then updated. The completeness of

the distance/congestion knowledge which a pedestrian has is dependent upon the amount

of training the agent has. In this paper, we consider agents with both low knowledge (10

training runs) and high knowledge (100 training runs).

4.5.3 System Knowledge

The final case we consider is providing pedestrians with dynamic route congestion

information and route distance information. This allows a pedestrian to evaluate all possible

routes for distance and congestion, even when those routes are not directly perceivable

(i.e. the route cannot be seen). Such information may one day be generally available to

pedestrians through personal hand-held devices or public displays [3,28,36]. Simulating the

knowledge provided by these egress assistance devices can provide an early look into the

effectiveness such devices may have on pedestrian egress times.
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(a) Building A (b) Building B (c) Building C

(d) Building D

Figure 4.3: Building layouts used in the congestion experiments.

4.6 Experimental Setup

All the experiments conducted in this paper use four different building layouts (see

Figure 4.3). Building A is designed with specific congestion considerations in mind. To

pedestrians in the inner rooms, each room doorway appears to be of equal value. However,

the lower doorways lead to a wider corridor and exit and will thus be able to accommodate

more pedestrians. Building B is designed to be representative of a general building layout.

Buildings C and D are approximations of actual buildings found on the California State

University, Long Beach campus.

4.6.1 Experiment 1

The purpose of the first set of experiments is to demonstrate the feasibility of using

reinforcement learning as a means to represent pedestrian knowledge in a simulation envi-

ronment. To do this, we show that as the number of learning trials (to which an agent is

subjected to) increases, the amount of building knowledge the pedestrian acquires also in-

creases. We show that this increase in building knowledge leads to a corresponding decrease

in pedestrian egress times.
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For each building, we conduct the test as follows. Five hundred pedestrians are trained

in the building for 100 simulation runs during which the agents learn route distance costs.

After each simulation run, the agents’ current policy is saved to disk so that we can recover

the policy learned after any given number of simulations runs.

In order to determine how much knowledge an agent has gained about a particular

building, we first need to define some metrics. We consider three key factors affecting

route knowledge: 1) the number of known decision points (node knowledge), 2) the number

of known paths between decision points (edge knowledge), and 3) the number of decision

points known to be direct exits (exit knowledge). Using these metrics, we can then calculate

the average amount of knowledge obtained by the agents for each trial run.

Figure 4.4 shows the average effect of multiple training runs on the total knowledge an

agent has. As can be seen from the graphs, the different metrics indicate different knowledge

levels, but the values of all metrics show an increase as the number of training runs increases.

Agents quickly learn a high percentage of the decision points and paths between decision

points, but for the key decision points representing building exits the percentages are lower.

This indicates that although the agent learns many internal routes after 100 training runs,

they are learning different exits at a slower rate.

As the amount of knowledge pedestrians have increases, so should the efficiency with

which agents egress from the building. To test this, we measure the egress time of 500

pedestrians randomly distributed throughout the building, averaged over 20 simulations

using policies of various training levels. Averaging the results over 20 simulation runs

provides relatively small error bars which boost our confidence in the accuracy of the mean

egress times obtained for each training level. Figure 4.5 compares the average egress times

obtained when agents have gone through 10, 50, and 100 training runs for each building.

The effect of additional training in building A is minimal. This implies that the addi-

tional knowledge gained is not helpful in improving egress times. Building A is fairly simple

and therefore the general layout can be learned quickly. Building B and building C both

show substantial improvement in egress times as the number of training runs increases in-
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Figure 4.4: Percentage of knowledge gained over time using three metrics

dicating that the knowledge gained by the pedestrians is indeed helpful in improving egress

times. Building D shows substantial improvement in egress times between 10 and 50 train-

ing runs, but then little change occurs between 50 and 100 training runs. This correlates to

the previous results in Figure 4.4, where the amount of knowledge gained between 50 and

100 training runs is much less for building D than it is for the other buildings.

4.6.2 Experiment 2

The next set of experiments are intended to measure the effectiveness of learning aver-

age route congestion costs in addition to route distance costs. The experiments also measure

the effectiveness of reacting to currently visible congestion and adjusting the selected route

accordingly. Notice the distinction between learning congestion levels and reacting to cur-

rent congestion levels. ‘Choose to react’ to congestion or ‘ignore congestion’ does not imply

either a knowledge or a lack of knowledge of average congestion levels. It is merely a deci-
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(d) Egress time for building D

Figure 4.5: Percentage of pedestrians exited over time using three levels of training

sion of whether or not to include current congestion levels in the decision-making process.

Conversely, having congestions knowledge does not imply that the agent must react to cur-

rent congestion levels, only that the agent will consider previous learned congestion levels

when making the decision. Thus, an agent having no previous congestion knowledge can

react to current congestion levels, and an agent having previous congestion knowledge can

choose to ignore current congestion levels.

For each building, we conduct the test as follows. Five hundred pedestrians are trained

in the building for 100 simulation runs, learning both route distance costs and average

congestion levels. The agents’ current policies are check pointed after 100 training runs

so that we can compare the egress times when pedestrians have high levels of knowledge.

We then measure the total egress time of 500 pedestrians randomly distributed through-

out the rooms, averaged over 20 simulations. There are two parameters that we adjust in

these tests: whether the pedestrian reacts to congestion, and what type of knowledge the
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pedestrian has. Pedestrians can either ignore current congestion levels or react to current

congestion levels, and pedestrians can have either learned distance knowledge, learned con-

gestion knowledge (which also includes distance knowledge), or system provided knowledge

for both route distances and congestion levels. Therefore we have six cases to consider: 1)

ignore current congestion and have learned distance knowledge (Ign-Dist), 2) ignore current

congestion and have learned both distance and congestion knowledge (Ign-Cong), 3) ignore

current congestion and have perfect distance knowledge provided by the system (Ign-Sys),

4) adjust to congestion and have learned building distance knowledge (Adj-Dist), 5) adjust

to congestion and have learned both distance and congestion knowledge (Adj-Cong), and

6) adjust to congestion and have perfect distance and congestion knowledge provided by

the system (Adj-Sys).

The results are shown in Figure 4.6. In every building layout tested, agents which

have learned both route distances and congestion levels have faster egress times than agents

which have learned only route distances. This indicates that learning average congestion

levels and using that knowledge in pedestrian egress is beneficial. However, the same can-

not be said about reacting to congestion. Although learning average congestion levels is

always beneficial in our tests cases, reacting to current congestion returns mixed results. In

building A, reacting to current congestion always improves performance regardless of the

type of knowledge a pedestrian has. This is not surprising because building A is specifically

designed to contain severe congestion problems which are easily mitigated. In Buildings B,

C and D, reacting to current congestion yields little change in overall egress time except

when pedestrians have only route distance knowledge. In this case, reacting to the current

congestion levels actually decreases the overall performance of the agents. This most likely

is occurring because the pedestrians are uniformly distributed within the building so the

congestion is also well distributed. Thus, when a pedestrian chooses to take an alternate

route, they soon discover that it is equally congested. Finally, in building D, reacting to

congestion actually improves performance if the pedestrian has learned previous congestion

levels. Although the pedestrians are still uniformly distributed, the routes to the exits are
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Figure 4.6: Percentage of pedestrians exited over time with different amounts of knowledge
and behaviors

not. In this case, knowing the typical congestion levels allows an agent to make a better

decision when reacting to the current congestion levels.

Interesting patterns in the data can also be observed when the egress times of agents

with different types of knowledge are compared. In half the buildings (A, and D) utilizing

learned congestion levels provides the best egress times, even outperforming system pro-

vided information. This is probably due to the oscillation which can occur when dynamic

information is provided. As is also seen in traffic management, providing dynamic infor-

mation can lead to many pedestrians switching routes simultaneously which decreases the

efficiency with which pedestrians are able to evacuate the building. In every building layout

tested, when pedestrians have only learned distance information, the performance is the

worst of all possibilities considered. Interestingly though, a pedestrian having system infor-

mation but ignoring current congestion levels and using only distance information is able to

egress from most buildings quickly. However, the distance information of such a pedestrian
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is complete. One would expect that with enough training, pedestrians having learned only

distance cost would also be able to egress from buildings with similar efficiency.

4.7 Future Work

The results from this paper were obtained using a limited number of building layouts.

Will the results be consistent for a larger number of actual building layouts?

How do the egress times of different levels of training correspond with egress times using

other knowledge representation schemes and how do they compare with reality? What level

of knowledge is reasonable for typically scenarios?

Adjusting to congestion yields ambiguous results. Can we determine what factors and

characteristics determine when pedestrians should react to congestion levels?

4.8 Conclusion

Providing agents with perfect knowledge is unrealistic for many pedestrian egress sit-

uations. However, manually specifying specific route knowledge can be a difficult and

time-consuming task. We have shown that reinforcement learning can be applied to suc-

cessfully represent different levels of knowledge about a building layout and produces egress

times dependent upon the knowledge level of the pedestrians. We have also provided three

different metrics for measuring the amount of building knowledge an agent has.

Using reinforcement learning, we have also shown that learning congestion cost in addi-

tion to distance costs leads to quicker egress times. However, reacting to current congestion

levels has ambiguous results. This is consistent with similar studies in the traffic manage-

ment domain. The layout of the building is found to have an impact on the strategy a

pedestrian should use to minimize egress time.
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CHAPTER 5

Group Formation and Knowledge Sharing in Pedestrian

Simulation1

5.1 Introduction

In coalition formation theory, a coalition will only form if the utility achieved by the

agents in the coalition is greater than the utility each agent could achieve alone [49]. This

assumption of individual rationality is typically made about agents in utility theory [47].

In pedestrian egress, pedestrians frequently travel in groups. From the above assumptions,

the utility of pedestrians should be greater by joining a group than if they were to travel as

individuals, yet most of the literature indicates that group formation has a negative effect

on flow rates, average speed, and egress times [35, 44, 55, 56]. From this data, two logical

conclusions can be drawn, given that individuals do form coalitions. First, the utility of

pedestrians during egress is affected by more factors than just egress time. Such factors

may include altruism or social influences. Second, other benefits are gained so that the

overall egress time is not always negatively affected. Such benefits may include information

sharing or stress reduction. In this paper, we primarily consider the effect of information

sharing on egress times and show that, in certain situations, egress time can be improved

through the formation of groups.

To understand the effects of group formation in pedestrian egress through simulation

techniques, it is necessary to have a pedestrian simulation framework which is capable

of modeling groups and group formation. In this paper, we therefore propose a novel

group framework to be used in simulating pedestrian egress. This framework, like several

other works [35, 43], uses a social cohesion force to simulate group behavior. However,

1Feuz, Kyle and Allan, Vicki “Group Formation and Knowledge Sharing in Pedestrian Simulation”
submitted to 11th International Conference on Autonomous Agents and Multiagent Systems 2012
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our framework also includes new techniques to address the question of route selection and

information sharing in a group situation.

5.2 Related Work

Several researchers have found negative effects on flow rates, and average speed when

group movement is considered. Moussaid et al. conduct empirical studies to determine sev-

eral group parameters including size, structure formation, and speed [35]. The average speed

is found to decrease with increasing group size. Similarly, Qiu develops a framework for

group modeling in [43] which predicts decreased flow rates for pedestrian groups. Initially,

the simulation model predicts an increase in flow rate as group size increases. As group size

continues to increase, however, the flow rates decrease. This makes sense intuitively because

with two or three people traveling together, the interactions are harmonious and increase

the smoothness of pedestrian flow. However, as the group size increases, the flow rate begins

to decrease as groups spend a large amount of time waiting for the other members of the

group to pass through a doorway or bottleneck before moving on. The model also predicts

decreased flow rates as the strength of interaction between group members (intra group

strength) and between groups (inter group strength) increases. Both Moussaid and Qiu use

a similar idea of representing group interactions through the use of a social cohesion force

which simulates group members’ desire to maintain a close proximity to each other. Neither

model, however, addresses the issues of route selection and information sharing in a group

setting.

Ji and Gao consider the effect of multiple leaders with perfect evacuation route knowl-

edge [42]. In their simulation model, they find that including more leaders increases the

egress efficiency, in terms of total egress time, up to a certain saturation point, after which

including more leaders decreases the egress efficiency [42]. This occurs because as the num-

ber of leaders increase, more pedestrians receive conflicting directions from multiple leaders

which in turn hinders their ability to quickly egress from the building. Murakami et al.

conduct a similar test using fire drills in a simulated model [37]. Leaders can instruct evac-

uees to either follow them or to take a certain route. They term these the “follow-me”
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and“follow-direction” methods respectively. In the simulation model, the follow-direction

method is implemented by leaders giving directions to nearby visible pedestrians, and the

pedestrians then always follow the directions given. For the follow-me technique, leaders

instruct nearby pedestrians to follow them. If the pedestrians fall behind, the leader waits

for them. The follow-me technique is most effective when sufficient numbers of leader are

present so that the pedestrians can easily find someone to follow [37]. In their experiments,

the dedicated leaders are known beforehand and given additional information regarding

which exits to take. We study the more general case where leaders are not known or given

special training prior to the simulation.

Yang and Zhao et al. use a simulation model to measure the effect of grouping upon

egress time [55, 56]. They classify grouping as either spatial or directional [56]. Spatial

grouping relates to individuals’ desire to be close physically. Directional grouping relates

to the desire of individuals to move in the same direction as others. Their model indicates

that spatial grouping is detrimental to egress efficiency. However, directional grouping is

found to increase the egress efficiency. This is one of the few papers that show any benefit

to grouping. However, we are interested in showing that even spatial grouping can lead to

additional benefits.

Ozel applies the theories of decision-making under time pressure and stress to the

emergency egress of pedestrians [38]. Under these theories, pedestrians will use different

coping mechanisms to process the information available and make decisions. These coping

mechanisms include increased rate of processing, avoidance of decision-making, and sub-

jective filtration of the information. He indicates that joining a group can be viewed as a

stress coping mechanism which allows a pedestrian to avoid the decision-making process by

passing the responsibility of making the decision on to the leader of the group.

5.3 Our Model

Our research study is performed using the Pedestrian Leadership and Egress Assistance

Simulation Environment (PLEASE), which we developed for this purpose. PLEASE is

built upon the multi-agent modeling paradigm where each pedestrian is represented as an
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individually rational agent capable of perceiving the environment and reacting to it. In

PLEASE, pedestrian agents can perceive obstacles, hazards, routes, and other agents. The

agents are capable of basic communication to allow for the formation and dissolution of

coalitions and the sharing of knowledge. The agents use a two tier navigational module to

control their movement within the simulation environment. The high-level tier evaluates

available routes and selects a destination goal. The low-level tier, based on the social force

model [19], performs basic navigation and collision avoidance.

5.3.1 Route Selection

PLEASE uses the concept of decision points to facilitate pedestrian route navigation.

A decision point is defined as a point in the building at which an agent must decide upon

the next location in the route. These points may be placed at arbitrary locations, but

typically decision points are placed at doorways and intersections. When exiting from a

building, pedestrians navigate from one decision point to another. By only placing decision

points at doorways and intersections, the placement of the decision point does not require

the pedestrian to pass through an area which they would not normally pass through when

navigating from one area of the building to another.

Several different route selection algorithms are implemented in PLEASE. For this pa-

per, we focus on two different route selection algorithms, a local route selection algorithm

and a trained route selection algorithm which are explained below. We use these two route

selection techniques to compare differences in egress times when pedestrians have different

amounts of knowledge about the building. The local route selection algorithm does not re-

quire any prior knowledge of the building as it uses only locally observable information. The

training algorithm allows pedestrians to know the route costs for decision points with which

they are familiar. This knowledge can then potentially be shared with other pedestrians.

Local Route Selection

The local route selection algorithm estimates the cost of exiting via a given decision

point based upon several locally observable characteristics of the point. In this paper, we
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use the distance, corridor width, room signs, and congestion characteristics when estimating

costs. These characteristics have been found to work well for a variety of building layouts [9].

Trained Route Selection

The training algorithm allows agents to experience multiple simulation runs in a build-

ing during which time the agents may learn the expected costs to different decision points.

This information is stored in the agent’s model of the building. More training provides

agents with more knowledge about the building, allowing for more effective route planning.

In this study, we restrict the learning to distance information. This is done to facilitate

the sharing of knowledge between group members by enforcing a common cost metric as

discussed in section 5.3.4.

5.3.2 Group Formation

PLEASE allows for pedestrians to travel in groups. These groups may be formed to

share knowledge, request aid, relieve stress, or interact socially. In PLEASE, groups are

more than just individuals traveling in the same direction. Being a member of a group im-

plies communication, agreement, and a desire to remain close together. Pedestrian groups

may be of a static or dynamic nature. All groups in PLEASE have a leader who is ulti-

mately responsible for the group decisions such as where to go next or when to allow other

pedestrians to join the group.

Similar to [35, 43], we represent groups using an additional cohesive force applied be-

tween group members. Pedestrians in a group seek to maintain a certain proximity to

visible group members. This makes sense because one pedestrian cannot maintain a certain

proximity to another pedestrian unless the location of the other pedestrian is known. When

turning the corner, pedestrians might temporarily lose sight of one another, but as the other

pedestrians also turn the corner they are able to reconnect.

Static Group Formation

Static groups can be formed at the beginning of the pedestrian simulation. These
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groups represent relationships, which are defined outside of the simulation such as family,

friend, or business relationships. Static groups do not change throughout the simulation:

new members cannot be added and current members are only removed when they exit the

building. Rather than require the user to define each group manually, PLEASE uses user-

defined parameters to automatically create groups at the start of the simulation. Empirical

studies have found that pedestrian group sizes tend to be small and follow a zero-truncated

Poisson distribution [35]. This distribution can be approximated by adjusting the parame-

ters controlling group formation.

Dynamic Group Formation

Dynamic groups can be formed throughout the simulation. An agent may seek to join or

leave a group at any time during the simulation, but joining a group requires the consensus

of the group members. Pedestrian agents use utility theory when deciding whether to join

a group and whether to accept new group members. The two actions each have separate

utility functions. We refer to the utility of joining a group as the agent’s individual utility

function. We refer to the utility of accepting new group members as the group utility

function. PLEASE is built to be extensible, so the exact utility functions used may be

easily changed. For dynamic group formation, we are interested in determining if there is

a benefit in joining a group whose members have more knowledge of the building versus

joining any group as a means to relieve stress. To make this comparison, we implement

an individual utility function based on the current stress level of the agent, and a separate

individual utility function based upon the amount knowledge the agent has of the building.

Similarly we define two group utility functions, one which focuses on the stress level of

the leader, and the other which focuses on the knowledge level of the leader. We keep

this function simple to allow for a more direct comparison between group formation based

upon stress and group formation based upon knowledge. In describing the group formation

process, we will use the following notation.

• A - The set of agents in the simulation
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• G - The set of groups of agents in the simulation.

• S - The set of agents in a group.

• Sx - The group of which agent x is a member.

• Ls - The leader of S

Initially ∀x ∈ A, Sx = {x} and Ls = x. This states that at the start of the simulation,

each agent in the simulation is the leader of a group consisting only of the individual

agent. The group formation process is divided into three steps, request admission, extend

invitation, accept invitation. Any agent may request admission into any nearby group. Any

agent may accept any received invitation. Only group leaders may extend invitations to

other agents. At every time step t, ∀x ∈ A, agent x evaluates its utility function and then

requests admission and/or accepts invitations to nearby groups based upon the expected

utility. ∀S ∈ G, Ls evaluates its group utility function and extends invitations based upon

the expected utility.

5.3.3 Route Consensus

The PLEASE model allows groups to use three different route consensus mechanisms,

which incorporate suggestions from group members to different degrees. The route con-

sensus mechanisms are least-cost route (LC), most-common route (MC), or dictator. The

dictator mechanism simply chooses the decision point proposed by the group leader and

serves as a benchmark to measure the effectiveness of groups. LC and MC require each

pedestrian in the group to submit a preferred decision point and an associated route cost

estimate. From the proposed routes, the LC mechanism then selects the route with the least

cost (as identified by group members). In order for the LC mechanism to work successfully,

group members must be using the same scale to measure cost. The group members are

assumed to be reliable. The MC mechanism selects the route which was proposed most fre-

quently. Ties are broken by average route cost. The MC mechanism mitigates the problems

inherent in comparing costs computed by various means as it chooses the most commonly
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proposed route. The group members can have completely different route cost functions and

a minority of group members could be unreliable without affecting the route selected by the

group. However, this mechanism is unable to take full advantage of the special knowledge

which any particular agent may have.

5.3.4 Information Sharing

When using the training route selection algorithm, agents are allowed to share expected

route cost information that they learn. Current simulation models assume that pedestrian

knowledge is not shared among group members. This is a valid assumption for many

situations. It represents pedestrian groups choosing an egress route without prior discussion

as to which route is the most efficient or effective. However, pedestrian groups might also

first discuss the benefits and drawbacks to a particular route before deciding on an egress

route. PLEASE allows for either scenario, and in this paper, we consider the effects of both.

In PLEASE, expected route-cost information may either be public or private. If the

information is public, then, at the beginning of the simulation, group members may share

all the route cost information for each decision point learned during the training runs. Each

agent has access to the models of other group members models to integrate into its own

model. Currently, all model information is treated equally so costs are integrated as an

average of the other agents’ costs. A more complex model might allow for issues such as

trust and reliability to affect the weight that each agent applies to other agents’ models

while integrating the costs into their own model.

Sharing information requires communication costs. In an actual situation, sharing

information may take anywhere from a few seconds to a few minutes. To account for this

fact, the system user may specify a knowledge sharing cost which is the time in seconds

which an agent spends sharing the route information with other group members. While

route information is being shared, no member of the group moves towards any goal location.

If group information is private, then the group members do not share complete route-cost

information. Hence there is no associated communication cost.

As the route consensus techniques are combined with different information sharing
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techniques, understanding exactly what information is shared can be confusing. To help

clarify, we state explicitly what information is shared for the various combinations. Using

the LC consensus mechanism with public knowledge results in agents sharing all their

respective knowledge for each decision point at the beginning of the simulation. Then as

the simulation proceeds, at every decision point, each agent will propose their preferred next

decision point and estimate of the total route cost via that decision point. The cheapest

proposed decision point will be selected. Using the MC consensus mechanism with public

knowledge results in agents sharing all their respective knowledge for each decision point at

the beginning of the simulation. Then as the simulation proceeds, at every decision point,

each agent will propose their preferred next decision point and estimate of the total route

cost via that decision point. The most commonly proposed decision point will be selected.

Because all the information has been shared previously, the only difference between these

mechanisms is in the individual perspectives of the agents. One agent might have a clearer

view of congestion then another agent, or one route might be closer to one agent but further

away for another agent.

With the LC consensus mechanism and private knowledge, no knowledge is shared

between agents at the beginning of the simulation. Then, as the simulation proceeds, at

every decision point, each agent will propose their preferred next decision point and estimate

of the total route cost via that decision point. The cheapest proposed decision point will be

selected. With the MC consensus mechanism and private knowledge, no knowledge is shared

between agents at the beginning of the simulation. Then, as the simulation proceeds, at

every decision point, each agent will propose their preferred next decision point and estimate

of the total route cost via that decision point. The most commonly proposed decision point

will be selected. In this case, considerable differences exists between these mechanisms as

each agent has unique knowledge.

5.4 Experimental Results

In this research, we consider the effects of static grouping on pedestrian egress times.

Various experiments control the route selection algorithm used, the route consensus mecha-
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nism, and the knowledge sharing available to pedestrians. Egress times are calculated with

100 agents per simulation. Test are repeated 20 times to put error bars into acceptable

ranges. To quantify differences between the performances of the different mechanisms, we

define efficiency as the amount of time taken to evacuate a given percentage of pedestrians.

We will use this definition of efficiency throughout our discussion of these experiments.

5.4.1 Static Groups

In the first experiment, we compare the results of static group formation when pedestri-

ans use the heuristic route selection with and without group formation. The group consensus

mechanism and knowledge sharing mechanism have little effect on the egress time, because

in this test, none of the pedestrians have prior knowledge of the building and they all use the

same heuristic function. The purpose of this experiment is to verify that pedestrian groups

have a negative impact on egress time and to quantify that impact when no knowledge is

shared between pedestrians. As can be seen in Figure 5.1, forming static pedestrian groups

without sharing knowledge has a negative impact on egress times. Group formation is 29%

less efficient at the 50% mark. In other words, the average time taken to evacuate 50% of

the pedestrians is 29% greater pedestrians form groups than when no groups are formed.

Group formation is 35% less efficient at the 70% mark and 69% less efficient at the 90%

mark.
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Figure 5.1: Comparison of static group formation on egress times when pedestrians have
no prior knowledge of route costs. Group use the least-cost route consensus mechanism
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In the second experiment, we show that group formation has a negative impact on egress

times when pedestrians have individualized knowledge of the building (acquired through

training) but do not share that knowledge. To do this we compare the egress times of the

pedestrians, which have learned route-distances over the period of 15 training runs, using

no groups versus using a dictatorship

Figure 5.2 shows the results of the second experiment. Again, as is expected, forming

pedestrian groups leads to slower egress times compared to no groups. Specifically, the

dictatorship group consensus mechanism leads to egress times which are 20% less efficient

at the 50% mark, 32% less efficient at the 70% mark and 69% less efficient at the 90% mark.
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Figure 5.2: Comparison of static group formation on egress times without the sharing of
knowledge using the following mechanisms: 1) No Groups and 2) Dictator

The last experiment for static groups compares the egress times of pedestrian egress

when group formation occurs and knowledge sharing is allowed. The first route consensus

mechanisms are tested pair-wise with the knowledge sharing mechanisms so we have the

following combinations: 1) No Groups, 2) Dictator, 3) Least-cost, Private information (cost-

prvt), 4) Least-cost, Public Information (cost-pblc, 5) Most-common, Private Information

(coomon-prvt), and 6) Most-common, Public Information (common-pblc). As with the

previous test, the pedestrians use the training route selection algorithm and have been

trained 15 times in the building. This means that most agents will know one or two exits

and several ways to get there. As the cost of communication is likely to vary depending upon

the circumstances, we consider two different communication costs, free (0 seconds per agent)
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and cheap (10 seconds per agent). As will be seen from the experiments, communication

costs which are much greater than 10 seconds per agent are no longer effective, so we do

not consider them.

Figure 5.3 compares the resulting egress times when knowledge sharing is free. When

group members have their route-cost knowledge public, group formation leads to decreased

egress times compared to no groups. Because all the route information is public between

group members, the consensus mechanisms has little effect on the egress time and only the

cost-pblc mechanism is shown in the results. When group members keep their knowledge

private, then the consensus mechanism has a greater effect upon egress times. If the group

uses the least-cost consensus mechanism, then the egress performance is nearly as good as if

the group had route-costs public among them and outperforms the egress time of individuals

who do not form groups. If the group uses the most common consensus mechanism, then

egress performance is actually worse than not forming groups, as the common consensus

mechanism is unable to capitalize on the information that may be had by only a minority

of the group members. These results show that when knowledge is shared for free among

group members, group formation is transformed from having a negative effect on egress

times to having a positive effect on egress times.
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Figure 5.3: Comparison of static group formation on egress times using the following mech-
anisms: 1) No Groups, 2) Dictator, 3) Least-cost, Private information (cost-prvt), 4) Least-
cost, Public Information (cost-pblc), and 5) Most-common, Private Information (common-
prvt). Knowledge sharing is considered to be free.

Assuming knowledge sharing is free is, of course, an unrealistic assumption so Figure
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5.4 compares the resulting egress times when knowledge sharing is cheap, incurring a cost

of 10 seconds per group member. Under this assumption, having knowledge public among

group members is no longer the most efficient solution. However, it can still improve the

efficiency of egress as compared to no knowledge sharing. It improves the efficiency with

which pedestrians exit as compared to the dictator mechanism after the 70% evacuated

mark, and it improves efficiency for the last 6% of pedestrians as compared to the common-

consensus mechanism without knowledge sharing. Using the least-cost route consensus

mechanism with private knowledge (cost-prvt) is the most efficient technique. It does not

incur the communication costs of publicly sharing all route knowledge but is still able to

benefit from the individual knowledge of each pedestrian. In these experiments, cost-prvt

is even more efficient than no groups. This is significant because it indicates that group

formation does not always have to have a negative effect on egress times. If the knowledge

can be used without explicitly being shared, then the whole group can benefit.
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Figure 5.4: Comparison of static group formation on egress times using the following mech-
anisms: 1) No Groups, 2) Dictator, 3) Least-cost, Private information (cost-prvt), 4) Least-
cost, Public Information (cost-pblc), and 5) Most-common, Private Information (common-
prvt). Knowledge sharing is considered to cause a delay of 10 seconds per group member.

Besides the efficiency of each mechanism, we also consider several other statistics which

indicate how well static groups maintain a close proximity (see Table 5.1). The two most

relevant statistics deal with the spatial and temporal proximity maintained by groups while

exiting the building. Spatial proximity is calculated as the average pair-wise distance be-

tween the locations at which each group member finishes. Temporal proximity is defined as
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Table 5.1: Ranking of route consensus and knowledge sharing mechanisms by spatial prox-
imity

Rank Mechanism Temporal Prox-
imity of Finish
Point

Spatial Prox-
imity of Finish
Point

1 cost-pblc 7.078 s 2.33 m

2 common-pblc 7.52 s 2.74 m

3 cost-prvt 7.95 s 5.11 m

4 common-prvt 12.04 s 5.43 m

5 dicator 11.95 s 6.00 m

6 no group 26.82 s 26.63 m

the amount of time elapsed between the successful egress of the first pedestrian of the group

and the successful egress of the last pedestrian of the group. These two measures reflect

how well group members maintained a close formation in both time and space. Table 3.1

shows the average spatial and temporal proximities for each combination of mechanisms

considered. The results are ranked from closest spatial proximities to furthest spatial prox-

imities. As would be expected, actively maintaining the group formation leads to closer

proximities than no groups regardless of the mechanism used. Having knowledge infor-

mation public among group members further increases the proximities group members are

able to maintain because each member has the same knowledge, after the initial sharing

has occurred. This might indicate one reason for sharing route information even with an

increased communication cost.

5.4.2 Dynamic Groups

We perform similar experiments with dynamic groups to evaluate the effect of dynamic

group formation on pedestrian egress time. The results obtained during these experiments

indicate that, like static group formation, dynamic group formation tends to lead to slower

egress times. The degree to which egress time is affected is dependent upon the number

and size of the groups which form. When only a few small groups form, egress time is not

significantly affected. However, as more groups are formed and as group size increases, the

negative impact on egress times also increase. When the egress times for the stress and
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knowledge utility functions are compared, there did not seem to be a significant difference.

It does not matter whether groups are formed because of insufficient knowledge or as a

means to relieve stress regardless of the knowledge level, the biggest predictor of egress

times is the number and size of groups formed.

5.5 Conclusions And Future Work

Pedestrian simulation is an important area of research with many applications. Until

recently, group formation in pedestrian egress has largely been ignored. However, recent

work has begun to address the issues that arise with group formation. In this paper, we have

implemented a novel dynamic group formation technique which allows pedestrian groups

to communicate, share knowledge and reach a consensus regarding route selection. To our

knowledge, this is the first such simulation model to address the issues of knowledge sharing

and group consensus in pedestrian egress. We have shown that although recent literature

emphasizes the negative impacts group formation can have upon egress times, positive in-

centives to group formation exist. Our simulation model predicts that sharing knowledge

in pedestrian groups can help pedestrian maintain proximity with greater ease as well as

improve egress times, compared to group formation without the sharing of knowledge. Ad-

ditionally, group formation is found to be especially effective when groups to not explicitly

share knowledge, but accept the least-cost route proposed by group members. Dynamic

group formation has impacts on egress times similar to those found with static group for-

mation. The number of groups formed and the size of the groups has a greater impact

on egress times than the reason for the group formation. Pedestrians can form groups to

compensate for a lack of knowledge or as a means to reduce stress, but both reasons have

similar impacts on total egress times.

As future work, we suggest that the communication costs for sharing route knowledge

be evaluated empirically. We also suggest that similar experiments be performed with

dynamic group formation to determine appropriate overhead costs for the group formation

techniques.
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CHAPTER 6

Conclusions and Future Work

This work has made the following contributions to the field:

• The implementation of a new pedestrian simulation model PLEASE for modeling

uncertainty in pedestrian knowledge, group formation, and information sharing.

• An evaluation of heuristic functions for predicting egress routes in a variety of real

buildings.

• The novel use of reinforcement learning to simulate pedestrian knowledge.

• The use of reinforcement learning to utilize congestion information.

• The implementation of group consensus and knowledge sharing mechanisms to eval-

uate coalition formation costs and benefits.

The model proposed in this work represents an important step towards making pedes-

trian simulation models more accurately reflect the real world by simulating the uncertainty

in pedestrian knowledge and allowing pedestrians in a group to collaboratively determine

the egress route they should take. We have shown that assigning heuristic costs to decision

points in the building can be an effective way to egress even when no knowledge of the

building exists a priori. We have also shown that understanding congestion levels plays an

important role in efficient pedestrian egress. In addition, we utilize reinforcement learn-

ing as an effective technique to provide pedestrians with unique, individualized knowledge

about a building. Finally, group formation is found to have a significant impact on egress

times, and interaction among group members can be both positive or negative depending

upon the situation.
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While answering several important questions in pedestrian egress simulation, this project

leaves several potential directions for future work. Choosing an effective heuristic for eval-

uation of routes is highly dependent upon the building layout. Can we categorize buildings

or, better yet, automatically learn to adjust the heuristic weights to effectively navigate

unfamiliar building layouts? In addition, the communication model between pedestrians

could be enriched so that additional information, such as the location of hazards, can be

shared among pedestrians.



65

REFERENCES

[1] Antonini, G., Bierlaire, M., and Weber, M. Discrete choice models of pedestrian walking

behavior. Transportation Research Part B: Methodological 40, 8 (2006), 667–687.

[2] Banerjee, B., Bennett, M., Johnson, M., and Ali, A. Congestion avoidance in multi-

agent-based egress simulation. In IC-AI (2008), pp. 151–157.

[3] Barnes, M., Leather, H., and Arvind, D. Emergency evacuation using wireless sensor

networks. Local Computer Networks, Annual IEEE Conference on 0 (2007), 851–857.

[4] Büchner, S., Hölscher, C., and Strube, G. Path choice heuristics for navigation related

to mental representations of a building. In Proceedings of the European Cognitive

Science Conference (May 2007), Taylor & Francis, pp. 504–509.

[5] Busoniu, L., Babuska, R., and De Schutter, B. A comprehensive survey of multiagent

reinforcement learning. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on 38, 2 (2008), 156–172.

[6] Claus, C., and Boutilier, C. The dynamics of reinforcement learning in cooperative

multiagent systems. In Proceedings of the National Conference on Artificial Intelligence

(1998), JOHN WILEY & SONS LTD, pp. 746–752.

[7] Dalton, R. The secret is to follow your nose. Environment and Behavior 35, 1 (2003),

107.

[8] Dia, H. An agent-based approach to modelling driver route choice behaviour under

the influence of real-time information. Transportation Research Part C: Emerging

Technologies 10, 5-6 (2002), 331–349.



66

[9] Feuz, K. D., and Allan, V. Pedestrian route selection with imperfect knowledge. In

Proceedings of the 4th Internation Conference on Agents and Artificial Intelligence

(2012).
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