
1

Heterogeneous Transfer Learning for Activity

Recognition using Heuristic Search Techniques

Kyle D. Feuz Diane J. Cook
Weber State University

Ogden, UT USA
kylefeuz@weber.edu

Washington State University
Pullman, WA, USA

cook@eecs.wsu.edu

Abstract

Purpose - Many pervasive computing applications require information about the
activities currently being performed, but activity recognition algorithms typically
require substantial amounts of labeled training data for each setting. One solution to
this problem is to leverage transfer learning techniques to reuse available labeled
data in new situations.

Design/methodology/approach - In this paper, we introduce three novel
heterogeneous transfer learning techniques that reverse the typical transfer model
and map the target feature space to the source feature space and apply them to
activity recognition in a smart apartment. We evaluate the techniques on data from
18 different smart apartments located in an assisted-care facility and compare the
results against several baselines.

Findings - The three transfer learning techniques are all able to outperform the
baseline comparisons in several situations. Furthermore, the techniques are
successfully used in an ensemble approach to achieve even higher levels of accuracy.

Originality/Value - The techniques in this paper represent a considerable step
forward in heterogeneous transfer learning by removing the need to rely on instance-
instance or feature-feature co-occurrence data.

Keywords: Heterogeneous Transfer Learning, Domain Adaption, Genetic Algorithms,
Activity Recognition, Heuristic Search, Smart Environments

1 Introduction

Activity recognition is an important problem for many different applications including
health monitoring, automatic security surveillance, and home/office automation.
However, most activity recognition algorithms require significant amounts of labeled
data which may not be readily available. Ideally we would like to be able to use labeled
data from a different domain to improve learning in the target domain. One example
would be to use labeled data from one or more smart apartments to recognize activities
in a new smart apartment which may have a different layout, different residents, or
different lifestyles or behavioral patterns. Another example would be using the labeled
data from a smart apartment to perform activity recognition in a smart office.

Traditional supervised machine learning techniques rely on the assumptions that the
training data and test data have similar probability distributions and that the
classification task is the same for both datasets. However, in the previous examples the

2

source and target data are clearly drawn from different probability distributions. In these
cases, traditional machine learning techniques often fail to correctly classify the test data.

Transfer learning techniques have been proposed to specifically handle these types of
situations. Transfer learning algorithms seek to apply knowledge learned from a previous
task to a new, but related, task. The intuition behind transfer learning stems from the
ability of humans to extend what has been learned in one context to a new context. In the
field of machine learning, the benefits of transfer learning are numerous; less time is spent
learning new tasks, less information is required of experts (usually human), and more
situations can be handled effectively, making the learned model more robust. These
potential benefits have led researchers to apply transfer learning techniques to many
domains with varying degrees of success.

Most transfer learning techniques focus on situations where the difference between
the source and target domains stems mainly from differences in the marginal probability
distributions of the domains or different task labels (Cook, et al., 2012; Pan & Yang, 2010).
Daumé and Marcu model the probability distribution using a mixture model with shared
and disjoint components (2006). Blitzer et al. (2006; 2007) propose Structural
Correspondence Learning (SCL) to use the correlation between certain pivot features
(which have the same semantic meaning in both domains) and other features to create a
common feature representation.

Heterogeneous transfer learning focuses on transfer learning problems where the
source and target domains are different because they have different feature spaces. Dai et
al. attempt solving the heterogeneous transfer learning problem by extending the risk
minimization framework (Lafferty & Zhai, 2001) and developing a translator between
feature spaces based upon co-occurrence data (feature-feature, feature-instance,
instance-feature, or instance-instance) between the source and target datasets (Dai, et al.,
2008). Prettenhofer extends SCL to the heterogeneous transfer learning case by using a
translation oracle (i.e. a domain expert or bi-lingual dictionary) to enumerate several
pivot features. These pivot features are then correlated to the other features in both
domains and a cross-lingual classifier is trained

(Prettenhofer & Stein, 2011).

Manual mapping strategies have also been used to overcome differences in the feature
spaces. For example, Van Kasteren et al. (2008; 2010) group sensors by their
location/function. Sensors in the source domain are then mapped to similar sensors in
the target domain. Rashidi and Cook also map sensors based on location/function but
apply additional transfer learning techniques to better align the source and target
datasets (Rashidi & Cook, 2010; 2011). Our approach, Feature-Space Remapping (FSR),
eliminates the need to manually map the feature spaces as this is handled by the
algorithm. Additional domain adaptation approaches can then be applied to further
improve the knowledge transfer. FSR requires the manual specification of meta-features
but this specification only occurs once and can be applied to map multiple source and
target domains. The techniques of both Rashidi and Van Kasteren require a mapping to
be defined for each source and target pair. Additionally, the manual mapping strategies
are domain dependent, while FSR is applicable to a variety of different problems.

Each of the above mentioned heterogeneous techniques requires some form of linkage
(co-occurrence data, dictionaries, or domain experts) between the source and target
dataset. FSR uses only a small amount of labeled data in the target domain to infer

3

relations to the source domain and can optionally operate without any labeled data in the
target domain or other linkage data.

With heterogeneous learning, transfer between vastly different domains becomes
feasible. The majority of heterogeneous transfer learning techniques map the source
feature space to the target feature space or to map both the source and target feature
space to a shared feature space. However, we show that by reversing this model and
mapping the target feature space to the source feature space one can leverage an existing
hypothesis in the source feature space to find a better mapping between feature spaces.
Additionally, by mapping the target feature space to the source feature space one can
easily create ensemble learners which further improve the accuracy of the proposed
techniques.

In this paper we propose three novel heterogeneous transfer learning techniques:
Feature-Space Remapping (FSR), Genetic Algorithm for Feature-Space Remapping (GAFSR),
and Greedy Search for Feature-Space Remapping (GrFSR). All three techniques are capable of
handling different feature spaces without the use of a translation oracle or instance-instance
co-occurrence data. We term the technique a “remapping” because the original raw target data
is already mapped onto a feature space and we remap the data to the source feature space.
The FSR technique can be used in either the informed or uninformed transfer learning setting
and we provide details for both cases. FSR uses only a small amount of labeled data in the
target domain to infer relations to the source domain and can optionally operate without any
labeled data in the target domain or other linkage data. GAFSR and GrFSR are both informed
supervised transfer learning techniques requiring labeled data be available in both the source
and target domain. For simplicity, we present the techniques here assuming the feature-space
is a vector of real-valued numbers. However, it is straightforward to extend the approaches to
handle categorical or discrete values as well.

We hypothesize that using FSR will allow for the successful transfer of knowledge
between heterogeneous source and target domains without requiring the typical co-
occurrence data or resorting to manually mapping the source and target domains to a
shared domain. We test this hypothesis on data gathered from multiple smart apartments
with varying layouts and sensor configurations and compare the performance to a manual
mapped strategy and to situations in which no transfer is performed.

In addition to presenting FSR for transferring knowledge from a single source domain
to a target domain, we also show how FSR can effectively combine the information from
multiple source domains by using an ensemble learner to increase the classification
accuracy in the target domain. We illustrate our techniques using examples from activity
recognition.

2 Background and Problem Definition

Many of the ideas and principles of machine learning have originated from comparisons
and analogies to human learning. The same is true with transfer learning. The ability to
identify deep, subtle connections, what we term transfer learning, is the hallmark of
human intelligence. Byrnes (1996) defines transfer learning as the ability to extend what
has been learned in one context to new contexts. Thorndike and Woodworth (1901) first
coined this term as they explored how individuals transfer learned concepts between

4

contexts that share common features. Barnett and Ceci provide a taxonomy of features
that influence transfer learning in humans (2002).

In the field of machine learning, transfer learning is studied under a variety of names
including learning to learn, life-long learning, knowledge transfer, inductive transfer,
context-sensitive learning, and meta-learning (Arnold, et al., 2007; Elkan, 2001; Thrun &
Pratt, 1998; Vilalta & Drissi, 2002). It is also closely related to self-taught learning, multi-
task learning, domain adaptation, and co-variate shift. Because of this broad variance in
the terminology used to describe transfer learning it is helpful to provide a formal
definition of the terms we will use throughout the rest of this paper.

2.1 Definitions

Definitions for domain and task have been provided by Pan and Yang (2010):

Definition 1 (Domain) A domain D is a two-tuple (χ, P(X)). χ is the feature space of D and

P(X) is the marginal distribution where X = {x1,...,xn}∈ χ.

Definition 2 (Task) A task T is a two-tuple (Y, f()) for some given domain D. Y is the label
space of D and f() is an objective predictive function for D. f() is sometimes written as a
conditional probability distribution P(y|x). f() is not given, but can be learned from the
training data.

Using these terms, we can now define transfer learning. In this paper we use the
definition given by Cook et al. (2012) which is similar to that presented by Pan and Yang
(Pan & Yang, 2010) but allows for transfer learning from multiple source domains.

Definition 3 (Transfer Learning) Given a set of source domains DS = Ds1,...,Dsn where n >
0, a target domain, Dt, a set of source tasks TS = Ts1,...Tsn where Tsi ∈ TS corresponds with Dsi

∈ DS, and a target task Tt which corresponds to Dt, transfer learning helps improve the
learning of the target predictive function ft() in Tt where Dt 6∈ DS and Tt 6∈ TS.

This definition of transfer learning is broad and encompasses a large number of
different transfer learning scenarios. The source tasks can differ from the target task by
having a different label space, a different predictive function for labels in that label space,
or both. The source data can differ from the target data by having a different domain, a
different task, or both. The FSR algorithm focuses on the challenge of the source and target
domain coming from different feature spaces. This is commonly referred to as
heterogeneous transfer learning in the literature and is formally defined below.

Definition 4 (Heterogeneous Transfer Learning) Given a set of source domains

DS = Ds1,...,Dsn where n > 0, a target domain, Dt, a set of source tasks TS = Ts1,...Tsn where Tsi ∈
TS corresponds with Dsi ∈ DS, and a target task Tt which corresponds to Dt, transfer learning

helps improve the learning of the target predictive function ft() in Tt where χt ∩ (χs1 ∪ ...χsn) =
∅.

5

Figure 1: Example mappings from target T (two-dimensional data) to source S (three-dimensional data)

Although FSR, GAFSR, and GrFSR focus on different feature spaces, they do not rely on
the other dimensions of the transfer learning problem remaining constant. Indeed the
datasets we use in the experimental section have differences in the marginal probability
distributions as well as in the label space. As with all transfer learning problems we do
rely on the basic assumption that there exists some relationship between the source and
target areas which allows for the successful transfer of knowledge from the source to the
target.

When the feature spaces of the domains are different, we assume that they can be
different both in terms of the number of dimensions and in the organization of the
dimensions. To illustrate this point, consider two different domains, one consisting of two
dimensional data and the other consisting of three dimensional data. It could be the case
that the first two dimensions are the same in both domains (see Figure 1a); however, it
could also be the case that the first two dimensions of the target domain correspond with
the last two dimensions of the source domain (see Figure 1b), or perhaps only the first
dimension of the target domain corresponds with the last dimension of the source
domain. It may even be the case that the dimensions are entirely different, but a mapping
between dimensions could still allow the knowledge gained in one domain to be used
effectively in the other domain (see Figure 1c). FSR learns a mapping from the target
feature space to the source feature space regardless of the exact differences between
dimensions.

In traditional machine learning, there are three basic types of techniques that are
utilized based upon the availability of labeled data, supervised, unsupervised, and semi-
supervised. In transfer learning, the availability of labeled data can be different in the
source and target domains, thus four general classes of techniques arise, informed
supervised, informed unsupervised, uninformed supervised, uninformed unsupervised.
We follow the definitions of Cook et al. (2012), where informed or uninformed refers to
the presence or absence, respectively, of labeled data in the target domain, and supervised
or unsupervised refers to the presence or absence of labeled data in the source domain.
A few works have explored unsupervised transfer learning techniques (Dai, et al., 2008;
Wang, et al., 2008) but we focus on supervised transfer learning in this paper. GAFSR and
GrFSR are developed as informed supervised learning techniques. FSR can be applied to
either the informed or uninformed case but for consistency we focus on the informed
supervised learning technique.

6

2.2 Illustrative Example

Before describing GAFSR, GrFSR, and FSR, we put forward an example transfer learning
scenario to illustrate the concepts introduced throughout the discussion. To that end, let
us consider the transfer learning problem for activity recognition in a smart environment
using ambient sensors.

Ambient sensors are typically embedded in an individual’s environment. Examples of
ambient sensors may include motion detectors, door sensors, object vibration sensors,
pressure sensors, and temperature sensors. As the name indicates, these sensors are
designed to disappear into the environment while collecting a variety of activity related
information such as human movements in the environment induced by activities,
interactions with objects during the performance of an activity, and changes to
illumination, pressure and temperature in the environment due to activities. Table 1
shows some example data from a smart home with ambient motion sensors.

Date Time Sensor Value

2011-06-15 03:41:50.30088 M021 OFF

2011-06-15 03:41:50.402649 MA020 OFF

2011-06-15 03:44:50.862962 M021 ON

2011-06-15 03:44:51.929508 M021 OFF

2011-06-15 04:41:28.179357 M021 ON

2011-06-15 04:41:29.333803 M021 OFF

2011-06-15 05:33:44.024833 M021 ON

2011-06-15 05:33:45.118382 M021 OFF

2011-06-15 06:33:30.363675 M021 ON

2011-06-15 06:33:31.437863 M021 OFF

2011-06-15 06:33:33.878588 M021 ON

2011-06-15 06:33:35.956492 M021 OFF

2011-06-15 08:45:45.685723 M021 ON

2011-06-15 08:45:46.789252 M021 OFF

2011-06-15 08:46:03.646237 M021 ON

2011-06-15 08:46:03.817155 MA020 ON

2011-06-15 08:46:08.513192 M021 OFF

2011-06-15 08:46:08.712314 MA020 OFF

2011-06-15 08:46:09.87972 MA020 ON

2011-06-15 08:46:12.103082 MA020 OFF

2011-06-15 08:46:21.859339 MA020 ON

2011-06-15 08:46:22.752142 M021 ON

2011-06-15 08:46:23.885996 M021 OFF

2011-06-15 08:46:25.199775 MA020 OFF

2011-06-15 08:46:26.713111 MA020 ON

2011-06-15 08:46:27.590115 M019 ON

2011-06-15 08:46:29.876241 MA020 OFF

2011-06-15 08:46:30.760636 M019 OFF

2011-06-15 08:46:32.587806 M018 ON

2011-06-15 08:46:36.329587 MA013 ON

2011-06-15 08:46:37.117772 M018 OFF

2011-06-15 08:46:45.86861 MA013 OFF

Table 1: Sample of Sensor Events

Suppose there are two homes (a source home and a target home) equipped with these
ambient sensors. The source home already has an activity recognition model trained for
that home. The target home does not yet have an activity recognition model trained. In
order to use the model from the source home to recognize activities in the target home,
they must use a common feature-space. A common approach to activity recognition using
ambient sensors is to formulate the problem as a bag of sensors approach over some
sliding window of time or sensor events. This means that the sensors from one home must

7

be mapped onto the sensors from the other home. Specifically, the features of one domain
must map onto the features (or dimensions) of the other domain. This could be
accomplished by mapping the sensors in the target home to the sensors in the source
home, mapping the sensors in the source home to sensors in the target home, or mapping
both the source and target sensors to a common set of generic labels (for example,
location-based mapping such as kitchen, bedroom, etc.).

This mapping is just the initial step in the transfer learning. Once a shared feature-
space is achieved, additional transfer learning may be necessary to resolve differences in
the marginal probabilities (the residents in one home may spend half the day sleeping,
while the residents in the other home only sleep 6 hours a day) or differences in the
classification task (the set of activities recognized may be different). The techniques we
present here focus on achieving this initial transformation of the feature-space.

3 Methods

Traditionally, domain adaptation problems have focused on the case when Ds ≠ Dt, usually
because P(Xs) ≠ P(Xt). For example, in activity recognition, the behavior of an individual may
change over time, multiple individual may utilize the same space differently. This creates
situations where the feature-space has not changed but the probability distribution of the
features over that feature-space has changed. When domain adaptation has been applied to

problems where χs ≠ χt there is usually a trivial transformation between feature spaces. An
example of this is found in document classification, where the domain dimensions are
typically word counts in each document. To compare documents with different words, a user
can set the word counts for the unseen words to zero. This allows the user to easily define a
common feature space between documents. Additional transfer learning techniques may still
be necessary because P(Xs) ≠ P(Xt) but the initial feature-space transformation is trivial. This
trivial transformation works because the semantic meaning of the dimensions is assumed to
be known.

Activity recognition aims to identify activities as they occur based on data collected by
sensors. Advances in pervasive computing and sensor networks have resulted in the
development of a wide variety of sensor modalities that are useful for gathering
information about human activities. The feature-spaces in these type of activity
recognition problems are often difficult to align because there is no trivial transformation
between feature-spaces.

In this work we present a heterogeneous transfer learning algorithm where the
feature space must be transformed in a non-trivial manner. The semantic meaning of the
dimensions is assumed to be either unknown or incompatible between the source and
target domains. In the activity recognition domain this is equivalent to having sensor
values but not knowing from which sensor (type or location) it originated. Unlike many
other heterogeneous transfer learning techniques, we do not rely on co-occurrence data
such as dictionaries, social annotations of images, or multi-view data. Additionally, we do
not assume that P(Ys|Xs) = P(Yt|Xt) or even that Ys = Yt but we do assume that they must
still be related.

To achieve the desired feature-space transformation, we view the problem as a new
machine learning task to learn a mapping from each dimension in the target feature space
to a corresponding dimension in the source feature space. More formally this can be

8

written as follows: Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys find a

mapping θ(χt, χs) such that errorθ(Hs) is minimized where errorθ(Hs) represents the

empirical error on the target domain by using Hs on the mapped target data. Notice the
distinction between this problem definition and other approaches typically applied to
heterogeneous transfer learning. Traditional heterogeneous transfer learning
approaches usually map source features to target features or source and target features
to a common feature space and then learn a hypothesis on this common feature space. In
our approach however, we map the target features to source features and we use an
already learned hypothesis to guide the mapping process and avoid the duplication of
work. If the mapping process proceeded in the other direction we would need to relearn
a new hypothesis for each step of the search which would greatly increase the
computational complexity of these techniques. By mapping from target to source we also
gain the ability to combine multiple data sources through ensemble learning which will
be discussed in Section 4. It is possible to relearn a new hypothesis after performing the
mapping. It is also possible to apply additional transfer learning approaches after first
obtaining a unified feature-space.

The number of possible mappings between source and target feature spaces grows
exponentially as the number of features increases. Even for lower dimensional data,
searching through all possible mappings quickly becomes computationally infeasible.
First we present Genetic Algorithms for Feature-Space Remapping (GAFSR) which
explores the search space using random permutations of possible mappings. This method
is the most computationally expensive but also explores the largest amount of mapping
space. Next we present Greedy Search for Feature-Space Remapping (GrFSR) which
applies the fitness function of the genetic algorithm to greedily select an approximation
to the optimal mapping without searching through all possible mappings. Finally, we
present Feature-Space Remapping (FSR) which uses less computationally expensive
heuristics to select an approximation to the optimal mapping.

The techniques we propose generate a many-to-one mapping. This is because multiple
dimensions (features) in the target space can be mapped to a single feature in the source
space but one feature in the target domain will never map to multiple features in the
source domain. We could make the mapping stricter by enforcing a one-to-one mapping
(with null mappings allowed) or we could relax the mapping by allowing weighted many-
to-many mappings. However, if we allowed a many-to-many mapping the search space
(which is already too large for brute-force searching) would grow even larger. For many
situations, a many-to-one mapping makes the most sense intuitively. For example,
consider a hallway which is lined with several narrow-view motion sensors in one
apartment and a hallway which has a single wide-view motion sensor in another
apartment. Each narrow-view motion sensor could map to the single wide-view motion
sensor in the other apartment but the wide-view motion sensor should just map to the
single narrow-view motion sensor which best encapsulates its behavior.

9

After the mapping has been obtained, the mapping must be applied to the target data
to be classified using the hypothesis learned on the source data. Because these techniques
produces a many-to-one mapping, the procedure for combining the multiple dimensions
must also be defined. For dimensions with numerical values, one could use an aggregate
value such as minimum, maximum, total, or average. For categorical values, one could use
a voting protocol. For each instance in the target data the features are mapped to the
source features. When multiple features in the target data are mapped to single feature in
the source data, the feature values are combined using the specified aggregation protocol.
In this work we use the summed value to aggregate target features mapped to the same
source feature. The entire process is summarized in Figure 2. The three techniques differ
in how they create the map but the rest of the steps are all identical.

3.1 Genetic Algorithm Feature-Space Remapping

The goal of the GAFSR technique is to find a near optimal mapping θ(χt, χs) such that the

error of the hypothesis on the target data is minimized. If n is the number of features in χs

and m is the number of feature in χt then there are nm possible mappings, making it
impractical to try all possible mappings. Instead, GAFSR uses a standard genetic algorithm
approach to explore the search space looking for reasonable solutions.

Genetic algorithms are a class of local search techniques which has been studied for
the past several decades (Mitchell, 1998; Russell & Norvig, 2010). The motivation for
genetic algorithms is rooted in the biological process of reproduction and evolution
(Goldberg & Holland, 1988). The basic idea is to start with a random population of strings
(chromosomes) and evaluate their fitness according to a specified function (the fitness
function). Chromosomes pairs are then selected (usually probabilistically according to the
normalized fitness score) and the selected chromosomes are mated via crossover to
produce new offspring. This process is then repeated a number of times until a stopping
criterion is met. Pseudo-code for GAFSR is found in Algorithm 1. The key components of
a genetic algorithm are: the chromosome definition, the fitness function, and the mutation
parameters. Each are described below.

The chromosome is defined such that each sensor in the target dataset is a gene with
n+1 possible values (1 for each source feature plus a null feature), thus the chromosome
is composed of m genes with n + 1 possible values for each gene. From a practical
standpoint, n can be seen as the number of sensor in the source domain and m can be seen
as the number of sensor in the target domain when using a bag of sensors approach to the
activity recognition problem.

Apply Map

Mapped
Target Data

Classify Output

Source
Data

Create Map

Source
Data

Target
 Data

Figure 2: Flowchart of the mapping process

10

Algorithm 1: GAFSR Algorithm

Data: Xt Target Features

Data: Xy Source Features

Data: s population size, g number of generations

Data: c cross-over rate, r mutation rate

Generate s initial random mappings from Xt to Xy // i.e. Chromosomes

for i ← 0 to g do

Evaluate fitness of each mapping;

Select pairs of mappings probabilistically weighted according to fitness;

With probability c, Swap portions of mappings between the selected pair;

With probability r, Mutate the mappings;

Evaluate fitness of each mapping;

Return mapping with best fitness;

We compare two different fitness functions based upon the unweighted average recall
(UAR) and the accuracy (ACC) of the target dataset obtained using a naïve Bayes classifier
which has been trained on the source dataset. The unweighted average recall is given by
Equation 1 and the accuracy is given by Equation 2. In both of these equations N is the
total number of instances, K is the number of labels, and A is the confusion matrix where
Aij is the number of instances of class i classified as class j.

𝑈𝐴𝑅 =

1

𝐾
 ∑

𝐴𝑖𝑖
∑ 𝐴𝑖𝑗
𝐾
𝑗=1

𝐾

𝑖=1

 (1)

𝐴𝐶𝐶 =

1

𝑁
∑𝐴𝑖𝑖

𝐾

𝑖=1

 (2)

The first fitness function, given in Equation 3, is defined as just the UAR of the target
dataset obtained using a naïve Bayes classifier which has been trained on the source
dataset. We use the average recall instead of the overall accuracy because the datasets are
imbalanced. A large percentage of the instances are represented by only a few class labels.
Using the unweighted average class recall is one technique for accounting for this
imbalance (van Kasteren, et al., 2008). The second fitness function, given in Equation 4, is
defined as the twice the UAR plus the overall accuracy (ACC) on the target dataset
obtained using a naïve Bayes classifier which has been trained on the source dataset. This
function is chosen to improve the overall accuracy obtained by the mapping technique
while still preserving the high unweighted average recall.

 F1 = UAR (3)

11

 F2 = ACC + 2 ∗ UAR (4)

The parameters of the genetic algorithm are chosen using limited validation testing to
find parameters which yield decent results. They are set to the following values:

• Population Size: 118

• Mutation rate: .06

• Crossover rate: .80

• Crossover type: 2-point cross-over

• Number of Generations: 100

In addition, we use the technique referred to as elitism where the best solution so far

is preserved across generations. This prevents the algorithm from losing the best solution
due to the random mutations and crossovers.

The asymptotic runtime of the proposed genetic algorithm is O(S ∗G∗N ∗ds) where S is
the size of the population, G is the number of generations N is the number of labeled target
instances and ds is the number of dimensions in the source feature-space. We have
purposely excluded the cost of creating the population for each generation because the
cost of the fitness function shown here is the dominating factor. For the size of the activity
recognition datasets we test here, S ∗G ≈ d2s giving us an asymptotic runtime of 𝑂(𝑁 ∗ 𝑑𝑠

3).

3.2 Greedy Search for Feature-Space Remapping

An alternative to genetic methods for searching a space is applying a greedy search, which
does not rely on the partially-random biologically-inspired search mechanism found in
genetic algorithms (Russell & Norvig, 2010). To compare our genetic solution to a greedy
approach, we introduce GrFSR which applies the same fitness function employed by the
genetic algorithm to greedily search through the mapping space and find an
approximation to the best mapping function.

The greedy algorithm selects a single feature in the target domain to consider. It then
maps this feature to all possible features in the source domain one at a time (including
the null feature, which in effect ignores the corresponding feature in the target domain)
while all other features in the target domain are mapped to null. The resulting mapping is
applied to the labeled target data and tested using the hypothesis obtained from the
source data. The mapping that produces the best result according to Equation 4 is selected
as the best mapping for that target feature. This is repeated for all the target features. A
final mapping is produced by combining the best mapping produced for each target
feature. Pseudo-code for the algorithm is given in Algorithm 2.

The asymptotic runtime of GrFSR is O(ds ∗ dt ∗ N ∗ ds) where ds is the number of
dimension in the source feature-space, dt is the number of dimension in the target feature-
space and N is the number of labeled data instance in the target domain. This runtime is
equivalent to O(N∗d3) if ds ≈ dt.

12

Algorithm 2: GrFSR Algorithm

Data: Xt Target Features

Data: Xs Source Features

3.3 Feature Space Remapping

In Feature Space Remapping, rather than exploring the entire search space of possible
mappings we instead use heuristics to select a mapping that approximate the optimal
mapping. Feature-feature, feature-instance or instance-instance co-occurrence data
could be used to guide the search but FSR operates under the assumption that this type
of data is not available. Instead FSR computes meta-features as a means to relate source
and target features. These meta-features can be defined and computed multiple ways
which will be discussed in Section 3.4. Algorithm 3 shows the pseudo-code for the FSR
technique and each step is discussed in detail below. To simplify the presentation of the
FSR algorithm, for now let us assume that meta-features have already been calculated for
the source and target features. One can think of the meta-features as a vector of numbers
assigned to each feature in the source and target space. These vectors can then be
compared to each other to find features with similar meta-features.

FSR computes a similarity matrix S between source features and target features. This
is done by computing a similarity score for each feature-feature pair based upon the meta-
features computed for the given features. The similarity score is computed as the average
similarity between the source and target meta-feature values. Formally, this score is given
by Equations 5 and 6.

𝑆𝑥𝑦 =

1

𝑁
∑Ω(𝑚𝑥

𝑖 , 𝑚𝑦
𝑖)

𝑁

𝑖=1

 (5)

where x is the xth source feature, y is the yth target feature, N is the number of meta-
features and Ω is the normalized similarity between two meta-features 𝑚𝑥

𝑖 and 𝑚𝑦
𝑖 , the

ith meta-feature of feature x and y respectively. We calculate the normalized similarity
between two meta-features as the absolute value of the difference between meta-feature
values divided by the maximum possible difference between the meta-features to obtain
a normalized value between 0 and 1. This is shown in Equation 6.

Ω(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖) = 1 −
|𝑚𝑥

𝑖 −𝑚𝑦
𝑖 |

max(𝑚𝑥
𝑖 ,𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡) − min(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡)
 (6)

for x ∈ X t do
for y ∈ X s do

fit[y] ← Fitness(x → y) ;

mapping[x] ← max(fit);

Return mapping;

13

Algorithm 3: FSR Algorithm

Data: Xt Target Features

Data: Xy Source Features

If the meta-feature values are all positive, which is the case for the experiments we
show here, the normalized similarity equation can be simplified to:

Ω(𝑚𝑥

𝑖 ,𝑚𝑦
𝑖) = 1 −

|𝑚𝑥
𝑖 −𝑚𝑦

𝑖 |

max(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡)
 (7)

FSR computes a mapping L : y → x by selecting source feature x with maximal
similarity to target feature y as given by the similarity matrix S.

 L(y) = argmax
𝑥∈𝐷𝑠

(𝑆𝑥𝑦) (8)

If we assume the meta-feature computation is linear, FSR has a running time of O(ds ∗
dt + n + m) where ds and dt is the dimensionality of the source and target data, respectively,
and n and m are the number of source and target instances, respectively. This runtime is
explained by the following observations. First, each dimension in the target domain is
compared to each dimension in the source domain, resulting in the ds ∗ dt term. Second,
assuming the meta-feature computation is linear in the number of data instances, then
computing the meta-features requires O(n + m) time. Finally, applying the mapping
requires a single pass through the target data or O(m) time.

As mentioned earlier, the defining and calculating of meta-features can be done in
multiple ways. If some labeled target data is available, it can be used to calculate domain-
independent meta-features (i.e. meta-features that can be applied to any heterogeneous
transfer learning problem). We refer to this as Informed Feature Space Remapping (IFSR)
because it requires the labeled target data. If no labeled target data is available then
domain-dependent meta-features must be defined. We refer to this as Uninformed

for x ∈ X t do
metas[x] ← ComputeMetaFeatures(x);

for x ∈ X s do
metas[x] ← ComputeMetaFeatures(x);

for x ∈ X t do
for x ∈ X s do

similarity[x][y] ← ComputeSimilarity(metas[x] , metas[y])

for x ∈ X t do
mapping[x] ← max(similarity[x ;])

Return mapping;

14

Feature Space Remapping (UFSR) because it does not require the label target data. In this
paper we only present the IFSR technique as it achieves better results than UFSR and is
consistent with the other techniques.

3.4 Informed Feature Space Remapping

Searching through all possible mappings to find the mapping which minimizes the error
of the hypothesis on the target data is computationally expensive. However, since the
hypothesis has been learned using the source training data one would expect the error to
be minimized by selecting mappings for which the feature-label co-occurrence data is
similar in the source and target datasets. This leads to our first heuristic for mapping
source and target features. IFSR computes the feature-label co-occurrence data for each
feature in the source and target space by calculating the expected value of the feature
given the label using the labeled training data. More formally, if Y = Ys ∪ Yt then the feature-
label co-occurrence data for each feature and label is computed as:

𝐸(𝑥|𝑐) =

1

𝑛𝑐
 ∑𝑥𝑖

𝑛

𝑖=1

 (9)

where x is the feature, c is the label such that c ∈ Y , nc is the number of data instances with
label c, xi is the value of feature x on the ith data instance with a label of c. This assumes a
real-valued number space. One could easily extend this to categorical values by using the
count of occurrences of each category as an estimation of the probability that the given
feature will have the given categorical value.

Each feature-label co-occurrence value now becomes a meta-feature for the given
feature. Thus E(x|c) is a meta-feature for feature x and x will have z = |Y | such meta-
features, one for each label c. Using feature-label co-occurrence data as a meta-feature
keeps the FSR asymptotic run time within the previously stated bound of O(ds∗dt+n+m).
This is because the meta-feature calculation is linear in the number of instances. We
compute E(x|c) for each label c ∈ Y . This can be done in a single pass through the datasets
and thus requires O(n + m + y) time. Typically n >> y and m >> y so this term can be
simplified to just O(n + m).

Additionally, using feature-label co-occurrence data for the meta-features provides
domain independent meta-features so that meta-features for the specific problem do not
need to be specified by a domain expert. Thus any domain for which labeled data exists
can apply this feature mapping technique without setting any parameters, defining any
relations, or defining any additional meta-features.

To understand why using the feature-label co-occurrence data as a heuristic to find an
approximation to the optimal mapping works we go back to the original problem

definition. Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys find a mapping

θ(χt, χs) such that errorθ(Hs) is minimized. This error is minimized by maximizing the

number of agreements between HS(θ(q)) and ft(q) as shown in Equation 10 where q is a
data instance in Xt and θ(q) is the mapped data in the source domain space.

15

max
𝜃

∑ {
1, 𝑖𝑓 𝐻𝑠(𝜃(𝑞)) = 𝑓𝑡(𝑞).

0, 𝑖𝑓 𝐻𝑠(𝜃(𝑞)) ≠ 𝑓𝑡(𝑞).𝑞∈𝑋𝑡

 (10)

A naïve Bayes classifier can learn a hypothesis by estimating P(c) and P(qi|c) based
upon their observed frequencies and applying Bayes rule to estimate the posterior
probability P(c|q). The class c with the highest posterior probability is selected as the class
label for q (Mitchell, 1997). Thus, if the hypothesis is expressed as a naïve Bayes classifier
and if we approximate the true predictive function ft() also using a naïve Bayes
formulation then Equation 10 can be expressed as shown in Equation 11.

max
𝜃

∑

{

1, 𝑖𝑓 max

𝑐∈𝑌
𝑃(𝑐)∏𝑃(𝜃(𝑞𝑖)|𝑐)

𝑑𝑡

𝑖=1

= max
𝑐∈𝑌

𝑃(𝑐)∏𝑃(𝑞𝑖|𝑐)

𝑑𝑡

𝑖=1

.

0, 𝑖𝑓 max
𝑐∈𝑌

𝑃(𝑐)∏𝑃(𝜃(𝑞𝑖)|𝑐)

𝑑𝑡

𝑖=1

≠ max
𝑐∈𝑌

𝑃(𝑐)∏𝑃(𝑞𝑖|𝑐)

𝑑𝑡

𝑖=1

.
𝑞∈𝑋𝑡

 (11)

Under this representation, selecting the mapping for each feature that has the most

similar feature-label co-occurrence value can be seen as a greedy approximation to
minimize the empirical error on the mapped target data. Indeed, when the feature values
are restricted to either 0 or 1, the feature-label co-occurrence value E(x|c) is equivalent
to the estimation of the probability that the feature has a value of 1 given the class label,
P(x = 1|c).

4 Combining Multiple Data-sources

One of the major benefits of the above mapping approaches is that they can be used to
combine data from multiple source domains in a straightforward manner. One example
where multiple source domains might arise is a single individual with labeled data in
multiple smart environments (home, office, car, etc.). Another example would be multiple
smart apartments with labeled data which can be used to recognize activities in new
smart apartment. An ensemble classifier can be built by mapping the target domain to
each source domain and training a separate base classifier for each source domain. The
output from these source classifiers can then be combined by the ensemble meta-
classifier to make the final prediction. We refer to this as Ensemble Learning via Feature-
Space Remapping (ELFSR).

Ensemble methods have been used in a variety of situations with great success.
According to Hansen and Salamon, a necessary and sufficient condition for ensemble
classifiers to be more accurate than any of the individual classifiers are for the classifiers
to be accurate and diverse (Hansen & Salamon, 1990). An accurate classifier is one which
has a classification accuracy better than random guessing (Dietterich, 2000). Two
classifiers are diverse if the errors they make are different (and preferably uncorrelated)
(Dietterich, 2000). Most ensemble techniques defined to date generate a set of diverse
classifiers. Bagging, for example, generates classifiers by repeatedly subsampling the
original data with replacement (Breiman, 1996). Boosting iteratively reweights samples
based on the accuracy of the previous iteration (Goldberg & Holland, 1988). In ELFSR,

16

each classifier is drawn from a different domain, leading to a naturally diverse set of
classifiers.

Once the classifiers are generated, the output must be combined to obtain the final
result. Several approaches have been used including majority voting, weighted voting,
summing the probabilities, and training a new learner on the output of the classifiers or
stacking (Wolpert, 1992). Stacking is a supervised technique and thus requires additional
labeled data to train the ensemble classifier. This means that stacking can be readily
combined with IFSR, which already uses labeled data.

Work on ensemble classifiers for transfer learning has mainly focused on boosting
techniques (Pan, et al., 2012; Xian-ming & Shao-zi, 2009; Yao & Doretto, 2010). As there
has been very little work on transfer learning using voting or stacking ensemble
classifiers, we compare the results of several different ensemble configurations using
activity recognition from multiple smart apartments as the source domains and activity
recognition for a different smart apartment as the target domain. Specifically, we consider
two voting ensembles (a majority voting ensemble and a summation voting ensemble),
and two stacking ensembles (via naïve Bayes and via a decision tree). The voting
ensembles have the advantage of not requiring any labeled data in the target domain,
while the stacking techniques require a small amount of labeled data.

4.1 Voting Ensemble

One of the simplest methods for combining multiple classifiers is through majority voting.
Each classifier votes for the class label it predicts for the given instance and the label
receiving the most votes wins.

The drawback to the majority voting ensemble classifier is that the ensemble throws
away important information by only considering the most likely label as predicted by
each classifier. The summation voting ensemble classifier rectifies this weakness by
summing up the predicted probability of each label for each classifier and then assigning
the label with the highest summed probability.

4.2 Stacking

In stacking, the output of each source classifier is fed into the ensemble classifier which
then produces the final classification. Here we consider two different classification
algorithms for the ensemble classifier, naïve Bayes and decision trees. One of the
drawbacks to using stacking is the requirement of labeled data to train the ensemble
classifier. Rather than test both FSR and IFSR with the stacking technique we only
consider the result of using IFSR since IFSR already uses a small amount of labeled data
in the target domain. We use stacking with IFSR without requiring any additional labeled
data in the target domain.

5 Experimental Results

GAFSR, GrFSR, and FSR can be applied to a variety of different transfer learning problems.
Here we evaluate the performance of these techniques in the activity recognition domain
under the following scenarios:

17

• Experiment 1 (Fitness Function): Show the effect of the choice of the fitness function on
the performance of GAFSR.

• Experiment 2 (FSR Comparison): Evaluate the performance of the FSR techniques in
comparison to several baselines including a manual mapping strategy and a strategy
that does not employ transfer learning.

• Experiment 3 (Learning Curve): Show the effect of the amount of labeled data available
in the target domain on the performance of the FSR algorithm.

• Experiment 4 (ELFSR Comparison): Evaluate the performance of the ELFSR techniques
in comparisons to several baseline techniques.

• Experiment 5 (ELFSR Learning Curve): Show the effect of the number of source
apartments used in the ensemble techniques.

5.1 Data

We use a dataset consisting of data from 18 different smart apartments. The apartments
are single residence assisted-living care facilities. Specific statistics for each apartment
are found in Table 2. Each apartment is equipped with motion sensors and door sensors.
The number of sensors range from 17 to 39 with an average of 28.7 sensors and a
standard deviation of 6.21. The layout for the apartments is shown in Figure 3. Each
dataset has been annotated with 37 different activities, shown in Table 3, with the total
amount of labeled data spanning one month of time per dataset. Not all apartments have
all 37 activity labels as indicated in the table. We consider all possible combinations of
source and target datasets, yielding a total of 306 possible pairings. We use a single day
of labeled data for the target domain and all 30 days of labeled data for the source domain.

Id # Features # Labels # Instances # UFSR
Meta-Features

IFSR
Meta-Features

1 35 29 133157 1575 1295
2 17 26 53669 765 629
3 37 31 178137 1665 1369
4 29 29 57918 1305 1073
5 39 32 141181 1755 1443
6 26 32 149391 1170 962
7 26 30 183945 1170 962
8 26 28 98768 1170 962
9 34 30 102466 1530 1258
10 24 30 143145 1080 888
11 38 30 157736 1710 1406
12 24 29 135451 1080 888
13 32 32 116641 1440 1184
14 26 31 195611 1170 962
15 23 29 100255 1035 851
16 33 32 179693 1485 1221
17 23 29 92740 1035 851
18 24 30 117067 1080 888

Table 2: Summary statistics of the activity recognition dataset

18

We formulate the learning problem as that of mapping a sequence consisting of the
most recent sensor events within a sliding window of length k to a label representing the
activity to the last (most recent) event in the sequence. The sensor events preceding the
last event define the context for this last event. Data collected in a smart home consists of
events generated by the sensors. These are stored as a 4-tuple: (Date, Time, Sensor Id,
Message) as shown in Table 1.

To perform activity recognition, we extract features from data point i, where the data
point corresponds to a sensor event sequence of length k. The vector xi includes values for
the features summarized in Table 4. Each yi corresponds to the activity label that is
associated with the last sensor event in the sequence. A collection of data points, xi, and
the corresponding labels, yi, are fed as training data to a classifier to learn the activity
models in a discriminative manner. The classifier thus learns a mapping from the sensor
event sequence to the corresponding activity label.

Activity Frequency Activity Frequency
Enter Home 0.0031 Personal Hygiene 0.0545
Eat Lunch 0.0070 Leave Home 0.0026
Cook Dinner 0.0534 Eat Dinner 0.0100
Exercise 0.0002 Cook Lunch 0.0274
Wash Dinner Dishes 0.0127 Relax 0.0191
Read 0.0103 Wash Lunch Dishes 0.0077
Phone 0.0029 Evening Meds 0.0037
Eat Breakfast 0.0101 Watch TV 0.0405
Cook 0.0348 Wash Breakfast Dishes 0.0126
Eat 0.0066 Groom 0.0087
Housekeeping 0.0113 Toilet 0.0434
Wash Dishes 0.0088 Work At Desk 0.0004
Sleep Out Of Bed 0.0034 Work At Table 0.0253
Morning Meds 0.0053 Cook Breakfast 0.0320
Take Medicine 0.0036 Bed Toilet Transition 0.0156
Bathe 0.0175 Work 0.0329
Other Activity 0.2789 Entertain Guests 0.0837
Sleep 0.0407 Work On Computer 0.0498
Dress 0.0194

Table 3: List of activities and the relative frequency of occurrence of each activity

5.2 Fitness Function

First, we consider the effect of the choice of fitness function on overall performance.
Performance is measured using both the accuracy (given by Equation 2) and the
unweighted average recall (given by Equation 1). We report both the accuracy and the
recall because accuracy scores are biased towards the majority class. For balanced class
distributions this has little effect on the metric, but it may not be suitable for unbalanced
class distributions. Using the unweighted average recall eliminates this bias and treats all
classes equally (van Kasteren, et al., 2008). Note that accuracy can also be considered as
the average recall weighted by the number of instances in the class.

19

Figure 3: Apartment layouts for the 18 smart apartments used in the experiments.

1 (a) Apt. 2) Apt. b ((c) Apt. 3 4 (d) Apt.

(e) Apt. 5) (f Apt. 6 () 7 Apt. g (h) Apt. 8

9 (i) Apt. (j) Apt. 10 (k) Apt. 11 (l) Apt. 12

(m) Apt. 13 (n) Apt. 14 (o) Apt. 15 (p) Apt. 16

(q) Apt. 17 (r) Apt. 18

20

Feature # Value

1 Time of day of the latest sensor event in the sliding window

2 Day of week of the latest sensor event in the sliding window

3 to n + 3 Number of occurrences of each sensor in within the current
window (n sensors)

Table 4: The feature vector describing a data point under the first feature representation.

5.3 Fitness Function

First, we consider the effect of the choice of fitness function on overall performance.
Performance is measured using both the accuracy (given by Equation 2) and the
unweighted average recall (given by Equation 1). We report both the accuracy and the
recall because accuracy scores are biased towards the majority class. For balanced class
distributions this has little effect on the metric, but it may not be suitable for unbalanced
class distributions. Using the unweighted average recall eliminates this bias and treats all
classes equally (van Kasteren, et al., 2008). Note that accuracy can also be considered as
the average recall weighted by the number of instances in the class.

Figure 4 shows the results averaged over all 306 pairings. In this case we use the full
30 days of labeled data in both the source and target domain as we are interested only in
the relative performance difference between the two fitness functions. As can be seen in
the figure, including the overall accuracy in the fitness function significantly improves the
accuracy without a significant drop in the unweighted recall.

5.4 FSR Comparison

Next, we compare the three proposed techniques, GAFSR, GrFSR, and IFSR, against several
other baselines. GAFSR and GrFSR use the fitness function specified in Equation 4. IFSR
uses the feature-label co-occurrence meta-features as described in Equation 9.

Figure 4: Average accuracy and recall scores over all 306 source-target pairings. Including
the accuracy score in the fitness function improves accuracy without degrading the
average recall.

21

The first baseline, Manual, uses the generalized sensor locations (kitchen, bedroom, etc.)
to map sensors from one apartment to another. The second baseline, None, treats all
sensor events as coming from a single source. Essentially this eliminates the sensor
dimension and only considers the time of day and day of week of the activity. The Manual
technique is the mapping technique currently used by most researchers in activity
recognition (Cook, et al., 2012; Rashidi & Cook, 2011; van Kasteren, et al., 2008). It does
not require any labeled data in the target domain, but it does require the manual
definition of sensor locations. On the other hand, None provides a lower bound on the
expected performance. The last baseline we consider, Self is a classifier trained and tested
in the target domain. All of the techniques use a naïve Bayes classifier trained on the
source domain and tested on the target domain. We considered other base classification
algorithms such as SVMs, Decision Trees and Nearest Neighbors. However, since the
meta-features used in IFSR are specifically related to naïve Bayes classification we have
found that it gives good results without the computational overhead of some of the other
methods. For comparison purposes, we also include results for IFSR when a decision tree
has been used as the base classification method.

The results are shown in Figure 5. A one-way ANOVA is performed and the resulting
p-value is less than .0001. The 95% confidence interval is depicted with the error bars.
All three techniques match or beat the two baselines of Manual and None. As the amount
of time spent exploring or computing a good mapping between the target and source
domains increases the resulting accuracy, recall and precision scores also increases.
GAFSR achieves the best performance scores under all three metrics but it also requires
the most time to run, while IFSR uses the fewest number of computations but also has
lower performance scores. Note that the performance gap between IFSR and GrFSR is
much smaller than the gap between GAFSR and GrFSR and is even reversed for the
precision metric. None of the techniques are able to match a classifier trained and tested
in the source domain. This provides evidence that applying additional domain adaptation
techniques may be beneficial.

Figure 5: Classification accuracy and recall on the target domain using a single source
domain. Manual and None provide baseline comparisons. Manual is the mapping
specified by a domain expert. None does not apply any mapping at all. GAFSR, GrFSR and
IFSR are all able to perform as good as or better than the Manual technique. The
performance of GAFSR, GrFSR, and IFSR is ordered by the computational complexity of
each technique, highlighting the benefit of exploring the mapping space at the cost of
increased running times.

22

The previously-discussed results are the average of 306 different mappings.
Individual results show both higher and lower performance. One direction of transfer
learning research focuses on how to select the best source dataset. Assuming this problem
is solved then we could select the “best” source dataset for each target dataset. We do not
claim that this contributes to avoid negative transfer, only that if negative transfer can be
predicted and avoided we can improve the results. Figure 6 shows the results of using the
best source dataset with the same mapping techniques discussed earlier. Under this
scenario, the accuracy scores of the three techniques are nearly equivalent with IFSR
actually performing the best. The recall scores of the three techniques continue to be
ordered by the computational complexity of the technique. Again all three techniques are
able to outperform the baseline techniques of Manual and None but this time they even
match or beat the performance of Self. A one-way ANOVA is performed and the resulting
p-value is less than .0005. The 95% confidence interval is depicted with the error bars.

5.5 FSR Learning Curve

The next experiment shows the effect of the amount of labeled target data on the accuracy
and recall score of the IFSR algorithm. As in the previous experiments, we use the 306
possible pairings of the activity recognition datasets. However, this time we vary the
number of days of labeled target data from 1 to 30. Figure 7 shows the results. Clearly,
adding more labeled target data is initially beneficial. However, the increase in accuracy
begins to level off after approximately ten days of labeled target data. The increase in
recall appears to peek between five and ten days of labeled target data after which point
the recall score declines slightly. This may indicate that having too much labeled data
causes IFSR to overfit the data.

Figure 6: Classification accuracy and recall on the target domain using the best single
source domain. This assumes that the best dataset to transfer from could be identified a
priori. Manual and None provide baseline comparisons. Manual is the mapping specified
by a domain expert. None does not apply any mapping at all. A one-way ANOVA is
performed and the resulting p-value is less than .0005. The 95% confidence interval is
depicted with the error bars.

23

5.6 ELFSR Comparison

Having examined the trade-off between the computational complexity and the performance
results of the GAFSR, GrFSR, and IFSR techniques, the remaining results focus on combining
multiple source datasets using ELFSR. In these experiment we have used ELFSR with the IFSR
technique but GAFSR or GrFSR could be used as well. We consider different voting and
stacking ensemble techniques which utilize data from multiple source datasets. IFSR-Maj
refers to using ELFSR in a majority voting ensemble. IFSR-Sum refers to using ELFSR in a
summed probability ensemble. IFSR-Bayes and IFSR-Tree refer to using ELFSR in a stacked
ensemble using a naïve Bayes classifier or Decision Tree classifier, respectively, as the
ensemble learning algorithm. We include several additional baseline techniques here. Self
uses a naïve Bayes classifier which has been trained on the target dataset using 3-fold cross-
validation and all 30 days of labeled data. Combined combines all of the source domain data
into one big dataset with sensor mappings being manually defined by location. The naïve
Bayes classifier is trained on all of the source data and then tested on the target data. The
ensemble techniques each train one naïve Bayes classifier per source dataset and the
ensemble is then tested on the target domain. Each stacking ensemble is trained using one
day’s worth of labeled data in the target domain.

Figure 8 shows the results using the voting ensemble techniques while Figure 9 shows the
results using the stacking ensemble techniques. In neither case do we attempt to select the
best source datasets: we simply use all available source datasets.

Figure 7: IFSR accuracy and recall scores as the amount of labeled target data used to
make the mapping from target feature space to source feature space increases. Accuracy
continues to show improvement with the increase of labeled target data while the recall
score appears to peek with between five and ten days of labeled data in the target domain

24

The IFSR voting ensembles perform comparably to the combined dataset. This is
consistent with the previous results where IFSR performs comparably to the Manual
technique. The trade-off is where the human effort is required. The combined dataset requires
a manually-mapped specification while the IFSR voting ensembles require a small amount of
labeled data in the target domain.

The performance of the IFSR stacking ensembles stand out above the rest. Both
stacking ensembles achieve higher performance in terms of the accuracy and recall scores
than the combined dataset or the Self classifier. It does this using only a single day’s worth
of labeled data and no manual mapping is required. The Self approach uses nearly 30 days
of labeled data and is trained and tested on the same dataset (with cross-validation),
while the Combined approach uses no labeled data in the target domain but requires a
manual mapping to be specified.

Figure 8: Classification accuracy and recall on the target domain using multiple source
domains with a voting ensemble. Self and Combined provide baseline comparisons. Self is
the result when the source and target dataset are the same and uses the all the labeled
target data, while Combined uses the mappings provided by a domain expert to build a
generic classifier. Matching the performance of Combined is a positive result.

Figure 9: Classification accuracy and recall on the target domain using multiple source
domains with stacking ensembles. Self and Combined provide baseline comparisons. Self
is the result when the source and target dataset are the same and uses the all the labeled
target data, while Combined uses the mappings provided by a domain expert to build a
generic classifier. The performance of IFSR-Bayes and IFSR-Tree both manage to beat
these baselines representing a considerable gain for the transfer learning techniques.

25

5.7 ELFSR Learning Curve

In addition to comparing the performance of ELFSR against other baseline techniques we
also consider how the number of source datasets affects the performance achieved by the
techniques. Figure 10 shows the learning curve for each ensemble technique as the
number of source datasets increases. For IFSR-Sum, IFSR-Bayes, and IFSR-Tree, the
performance increases with an increasing number of datasets. Most of the improvement
is achieved within the first seven datasets, after which performance improvement tapers
off. For IFSR-Maj, the accuracy performance improves with an increasing number of
datasets, but the recall performance remains almost constant regardless of the number
of datasets. This illustrates the fact that important distinguishing information is being
discarded by the majority voting scheme.

6 Conclusions

In this paper we present novel heterogeneous transfer learning techniques for use in
recognizing activities between different smart home environments. These techniques,
transfer knowledge between domains with different feature spaces without using typical
co-occurrence data. The datasets we tested on also had different marginal probability
distributions on the domains, and different conditional probabilities. This makes the
difference between source and target datasets greater than many previously attempted
transfer learning problems. The key insight allowing these techniques to work is that by
mapping the target features to the source features we are able to reuse an existing
hypothesis to guide the search for ‘good’ maps. The proposed techniques can be
generalized and applied to any heterogeneous transfer learning problem where labeled
target data exists. The techniques are compatible with most other transfer learning
techniques and could be applied as a pre-processing step to obtain a common feature
space before applying traditional domain adaptation techniques.

Figure 10: Learning curve for the ensemble classifiers where the number of source classifiers ranges from
2 to 16. Each ensemble technique quickly improves with more source classifiers but the performance
improvements then begin to level off.

Number of Sources

26

Ensemble Learning via Feature-Space Remapping is introduced to combine multiple
source datasets and achieve even greater classification accuracy. Using ELFSR we are able
to outperform a classifier which has been trained and tested exclusively in the target
domain using a full thirty days of labeled data, while ELFSR uses just a singled day of
labeled data in the target domain.

There are still many open research questions to pursue, including avoiding negative
transfer effects and identifying the best sources for transfer. An additional future
direction involves the combining of multiple dimensions. The techniques we have
explored generate a many-to-one mapping of target dimensions to source dimensions.
We suggest exploring additional ways of combining multiple dimensions as well as
exploring enforcing a one-to-one mapping or relaxing the mapping to allow a many-to-
many mapping. Other challenges remain as well such as handling concurrent or
interleaved activities. While there is still much research to be done, GAFSR, GrFSR and
FSR are all promising new techniques to improve the transfer of knowledge between
domains which will in turn lead to more robust activity recognition systems and learning
systems in general.

References

Arnold, A.; Nallapati, R. & Cohen, W. (2007), “A Comparative Study of Methods for

Transductive Transfer Learning”, in Seventh IEEE International Conference on Data Mining

Workshops, pp. 77 -82.

Barnett, S. & Ceci, S. (2002), “When and where do we apply what we learn?: A taxonomy for

far transfer”, Psychological bulletin Vol. 128 No. 4, pp. 612-637.

Blitzer, J.; Dredze, M. & Pereira, F. (2007), “Biographies, Bollywood, Boom-boxes and

Blenders: Domain Adaptation for Sentiment Classification”, in Proceedings of the 45th Annual

Meeting of the Association for Computational Linguistic.

Blitzer, J.; McDonald, R. T. & Pereira, F. (2006), “Domain Adaptation with Structural

Correspondence Learning”, in Proceedings of the 2006 Conference on Empirical Methods in

Natural Language Processing, pp. 120-128.

Breiman, L. (1996), “Bagging predictors”, Machine Learning Vol. 24, pp. 123-140.

Byrnes, J. (1996), Cognitive development and learning in instructional contexts, Allyn and

Bacon, Boston.

Cook, D. J.; Feuz, K. D. & Krishnan, N. C. (2012), “Transfer Learning for Activity

Recognition”, Knowledge and Information Systems Vol. 36, pp. 537--556.

Dai, W.; Chen, Y.; Xue, G.-R.; Yang, Q. & Yu, Y. (2008), “Translated learning: Transfer

learning across different feature spaces”, in Advances in Neural Information Processing

Systems, pp. 353--360.

27

Dai, W.; Yang, Q.; Xue, G.-R. & Yu, Y. (2008), “Self-taught clustering”, in Proceedings of the

25th international conference on Machine learning, ACM, New York, NY, USA, pp. 200--

207.

Daumé, III, H. & Marcu, D. (2006), “Domain adaptation for statistical classifiers”, Journal of

Artificial Intillegence Research Vol. 26 No. 1, pp. 101--126.

Dietterich, T. G. (2000), “Ensemble Methods in Machine Learning”, in Proceedings of the First

International Workshop on Multiple Classifier Systems, Springer-Verlag, pp. 1--15.

Elkan, C. (2001), “The foundations of cost-sensitive learning”, in Proceedings of the 17th

international joint conference on Artificial intelligence, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp. 973--978.

Freund, Y. & Schapire, R. E. (1997), “A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting”, Journal of Computer and System Sciences Vol. 55

No. 1, pp. 119 - 139.

Goldberg, D. E. & Holland, J. H. (1988), “Genetic algorithms and machine learning”, Machine

learning Vol. 3 No. 2, pp. 95--99.

Hansen, L. & Salamon, P. (1990), “Neural Network Ensembles”, IEEE Transactions on Pattern

Analysis and Machine Intelligence Vol. 12 No. 10, pp. 993-1001.

van Kasteren, T.; Englebienne, G. & Krцse, B. (2010), “Transferring Knowledge of Activity

Recognition across Sensor Networks”, in Pervasive Computing, Springer Berlin / Heidelberg,

pp. 283-300.

van Kasteren, T.; Englebienne, G. & Krцse, B. (2008), “Recognizing activities in multiple

contexts using transfer learning”, in “AAAI AI in Eldercare Symposium”.

Lafferty, J. & Zhai, C. (2001), “Document language models, query models, and risk

minimization for information retrieval”, in Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, pp. 111--119.

Mitchell, M. (1998), An Introduction to Genetic Algorithms (Complex Adaptive Systems), A

Bradford Book.

Mitchell, T. M. (1997), “Bayesian Learning”, Machine Learning, McGraw-Hill, Inc., New

York, NY, USA, pp. 154 -- 200.

Pan, S. & Yang, Q. (2010), “A survey on transfer learning”, Knowledge and Data Engineering,

IEEE Transactions on Vol. 22 No. 10, pp. 1345--1359.

Pan, W.; Zhong, E. & Yang, Q. (2012), “Transfer learning for text mining” Mining Text Data,

Springer, pp. 223--257.

Prettenhofer, P. & Stein, B. (2011), “Cross-lingual adaptation using structural correspondence

learning”, ACM Transactions on Intelligent Systems and Technology (TIST) Vol. 3 No. 1, pp.

13.

28

Rashidi, P. & Cook, D. (2011), “Activity knowledge transfer in smart environments”, Pervasive

and Mobile Computing Vol. 7 No. 3, pp. 331-343.

Rashidi, P. & Cook, D. (2010), “Multi home transfer learning for resident activity discovery

and recognition”, in KDD Knowledge Discovery from Sensor Data, pp. 56--63.

Russell, S. J. & Norvig, P. (2010), Artificial Intelligence - A Modern Approach (3rd ed.),

Pearson Education.

Thorndike, E. & Woodworth, R. (1901), “The influence of improvement in one mental function

upon the efficiency of other functions”, Psychological review Vol. 8 No. 3, pp. 247-261.

Thrun, S. (1996), Explanation-based neural network learning: A lifelong learning approach,

Kluwer Academic Publishers.

Thrun, S. & Pratt, L. (1998), Learning to learn, Kluwer Academic Publishers.

Vilalta, R. & Drissi, Y. (2002), “A Perspective View and Survey of Meta-Learning”, Artificial

Intelligence Review Vol. 18, pp. 77-95.

Wang, Z.; Song, Y. & Zhang, C. (2008), “Transferred Dimensionality Reduction”, in Machine

Learning and Knowledge Discovery in Databases, Springer Berlin / Heidelberg, pp. 550-565.

Wolpert, D. H. (1992), “Stacked generalization”, Neural Networks Vol. 5, pp. 241--259.

Xian-ming, L. & Shao-zi, L. (2009), “Transfer AdaBoost learning for action recognition”, in

IEEE International Symposium on IT in Medicine Education, pp. 659 -664.

Yao, Y. & Doretto, G. (2010), “Boosting for transfer learning with multiple sources”, in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1855--1862.

