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Abstract 

Purpose - Many pervasive computing applications require information about the 
activities currently being performed, but activity recognition algorithms typically 
require substantial amounts of labeled training data for each setting. One solution to 
this problem is to leverage transfer learning techniques to reuse available labeled 
data in new situations. 

Design/methodology/approach - In this paper, we introduce three novel 
heterogeneous transfer learning techniques that reverse the typical transfer model 
and map the target feature space to the source feature space and apply them to 
activity recognition in a smart apartment. We evaluate the techniques on data from 
18 different smart apartments located in an assisted-care facility and compare the 
results against several baselines. 

Findings - The three transfer learning techniques are all able to outperform the 
baseline comparisons in several situations. Furthermore, the techniques are 
successfully used in an ensemble approach to achieve even higher levels of accuracy. 

Originality/Value - The techniques in this paper represent a considerable step 
forward in heterogeneous transfer learning by removing the need to rely on instance-
instance or feature-feature co-occurrence data. 

Keywords: Heterogeneous Transfer Learning, Domain Adaption, Genetic Algorithms, 
Activity Recognition, Heuristic Search, Smart Environments 

1 Introduction 

Activity recognition is an important problem for many different applications including 
health monitoring, automatic security surveillance, and home/office automation. 
However, most activity recognition algorithms require significant amounts of labeled 
data which may not be readily available. Ideally we would like to be able to use labeled 
data from a different domain to improve learning in the target domain. One example 
would be to use labeled data from one or more smart apartments to recognize activities 
in a new smart apartment which may have a different layout, different residents, or 
different lifestyles or behavioral patterns. Another example would be using the labeled 
data from a smart apartment to perform activity recognition in a smart office. 

Traditional supervised machine learning techniques rely on the assumptions that the 
training data and test data have similar probability distributions and that the 
classification task is the same for both datasets. However, in the previous examples the 
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source and target data are clearly drawn from different probability distributions. In these 
cases, traditional machine learning techniques often fail to correctly classify the test data. 

Transfer learning techniques have been proposed to specifically handle these types of 
situations. Transfer learning algorithms seek to apply knowledge learned from a previous 
task to a new, but related, task. The intuition behind transfer learning stems from the 
ability of humans to extend what has been learned in one context to a new context. In the 
field of machine learning, the benefits of transfer learning are numerous; less time is spent 
learning new tasks, less information is required of experts (usually human), and more 
situations can be handled effectively, making the learned model more robust. These 
potential benefits have led researchers to apply transfer learning techniques to many 
domains with varying degrees of success. 

Most transfer learning techniques focus on situations where the difference between 
the source and target domains stems mainly from differences in the marginal probability 
distributions of the domains or different task labels (Cook, et al., 2012; Pan & Yang, 2010). 
Daumé and Marcu model the probability distribution using a mixture model with shared 
and disjoint components (2006). Blitzer et al. (2006; 2007) propose Structural 
Correspondence Learning (SCL) to use the correlation between certain pivot features 
(which have the same semantic meaning in both domains) and other features to create a 
common feature representation. 

Heterogeneous transfer learning focuses on transfer learning problems where the 
source and target domains are different because they have different feature spaces. Dai et 
al. attempt solving the heterogeneous transfer learning problem by extending the risk 
minimization framework (Lafferty & Zhai, 2001) and developing a translator between 
feature spaces based upon co-occurrence data (feature-feature, feature-instance, 
instance-feature, or instance-instance) between the source and target datasets (Dai, et al., 
2008). Prettenhofer extends SCL to the heterogeneous transfer learning case by using a 
translation oracle (i.e. a domain expert or bi-lingual dictionary) to enumerate several 
pivot features. These pivot features are then correlated to the other features in both 
domains and a cross-lingual classifier is trained 

(Prettenhofer & Stein, 2011). 

Manual mapping strategies have also been used to overcome differences in the feature 
spaces. For example, Van Kasteren et al. (2008; 2010) group sensors by their 
location/function. Sensors in the source domain are then mapped to similar sensors in 
the target domain. Rashidi and Cook also map sensors based on location/function but 
apply additional transfer learning techniques to better align the source and target 
datasets (Rashidi & Cook, 2010; 2011). Our approach, Feature-Space Remapping (FSR), 
eliminates the need to manually map the feature spaces as this is handled by the 
algorithm. Additional domain adaptation approaches can then be applied to further 
improve the knowledge transfer. FSR requires the manual specification of meta-features 
but this specification only occurs once and can be applied to map multiple source and 
target domains. The techniques of both Rashidi and Van Kasteren require a mapping to 
be defined for each source and target pair. Additionally, the manual mapping strategies 
are domain dependent, while FSR is applicable to a variety of different problems. 

Each of the above mentioned heterogeneous techniques requires some form of linkage 
(co-occurrence data, dictionaries, or domain experts) between the source and target 
dataset. FSR uses only a small amount of labeled data in the target domain to infer 
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relations to the source domain and can optionally operate without any labeled data in the 
target domain or other linkage data. 

With heterogeneous learning, transfer between vastly different domains becomes 
feasible. The majority of heterogeneous transfer learning techniques map the source 
feature space to the target feature space or to map both the source and target feature 
space to a shared feature space. However, we show that by reversing this model and 
mapping the target feature space to the source feature space one can leverage an existing 
hypothesis in the source feature space to find a better mapping between feature spaces. 
Additionally, by mapping the target feature space to the source feature space one can 
easily create ensemble learners which further improve the accuracy of the proposed 
techniques. 

In this paper we propose three novel heterogeneous transfer learning techniques: 
Feature-Space Remapping (FSR), Genetic Algorithm for Feature-Space Remapping (GAFSR), 
and Greedy Search for Feature-Space Remapping (GrFSR). All three techniques are capable of 
handling different feature spaces without the use of a translation oracle or instance-instance 
co-occurrence data. We term the technique a “remapping” because the original raw target data 
is already mapped onto a feature space and we remap the data to the source feature space. 
The FSR technique can be used in either the informed or uninformed transfer learning setting 
and we provide details for both cases. FSR uses only a small amount of labeled data in the 
target domain to infer relations to the source domain and can optionally operate without any 
labeled data in the target domain or other linkage data. GAFSR and GrFSR are both informed 
supervised transfer learning techniques requiring labeled data be available in both the source 
and target domain. For simplicity, we present the techniques here assuming the feature-space 
is a vector of real-valued numbers. However, it is straightforward to extend the approaches to 
handle categorical or discrete values as well. 

We hypothesize that using FSR will allow for the successful transfer of knowledge 
between heterogeneous source and target domains without requiring the typical co-
occurrence data or resorting to manually mapping the source and target domains to a 
shared domain. We test this hypothesis on data gathered from multiple smart apartments 
with varying layouts and sensor configurations and compare the performance to a manual 
mapped strategy and to situations in which no transfer is performed. 

In addition to presenting FSR for transferring knowledge from a single source domain 
to a target domain, we also show how FSR can effectively combine the information from 
multiple source domains by using an ensemble learner to increase the classification 
accuracy in the target domain. We illustrate our techniques using examples from activity 
recognition. 

2 Background and Problem Definition 

Many of the ideas and principles of machine learning have originated from comparisons 
and analogies to human learning. The same is true with transfer learning. The ability to 
identify deep, subtle connections, what we term transfer learning, is the hallmark of 
human intelligence. Byrnes (1996) defines transfer learning as the ability to extend what 
has been learned in one context to new contexts. Thorndike and Woodworth (1901) first 
coined this term as they explored how individuals transfer learned concepts between 
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contexts that share common features. Barnett and Ceci provide a taxonomy of features 
that influence transfer learning in humans (2002). 

In the field of machine learning, transfer learning is studied under a variety of names 
including learning to learn, life-long learning, knowledge transfer, inductive transfer, 
context-sensitive learning, and meta-learning (Arnold, et al., 2007; Elkan, 2001; Thrun & 
Pratt, 1998; Vilalta & Drissi, 2002). It is also closely related to self-taught learning, multi-
task learning, domain adaptation, and co-variate shift. Because of this broad variance in 
the terminology used to describe transfer learning it is helpful to provide a formal 
definition of the terms we will use throughout the rest of this paper. 

2.1 Definitions 

Definitions for domain and task have been provided by Pan and Yang (2010): 

Definition 1 (Domain) A domain D is a two-tuple (χ, P(X)). χ is the feature space of D and 

P(X) is the marginal distribution where X = {x1,...,xn}∈ χ. 

Definition 2 (Task) A task T is a two-tuple (Y, f( )) for some given domain D. Y is the label 
space of D and f( ) is an objective predictive function for D. f( ) is sometimes written as a 
conditional probability distribution P(y|x). f( ) is not given, but can be learned from the 
training data. 

Using these terms, we can now define transfer learning. In this paper we use the 
definition given by Cook et al. (2012) which is similar to that presented by Pan and Yang 
(Pan & Yang, 2010) but allows for transfer learning from multiple source domains. 

Definition 3 (Transfer Learning) Given a set of source domains DS = Ds1,...,Dsn where n > 
0, a target domain, Dt, a set of source tasks TS = Ts1,...Tsn where Tsi ∈ TS corresponds with Dsi 

∈ DS, and a target task Tt which corresponds to Dt, transfer learning helps improve the 
learning of the target predictive function ft( ) in Tt where Dt 6∈ DS and Tt 6∈ TS. 

This definition of transfer learning is broad and encompasses a large number of 
different transfer learning scenarios. The source tasks can differ from the target task by 
having a different label space, a different predictive function for labels in that label space, 
or both. The source data can differ from the target data by having a different domain, a 
different task, or both. The FSR algorithm focuses on the challenge of the source and target 
domain coming from different feature spaces. This is commonly referred to as 
heterogeneous transfer learning in the literature and is formally defined below. 

Definition 4 (Heterogeneous Transfer Learning) Given a set of source domains 

DS = Ds1,...,Dsn where n > 0, a target domain, Dt, a set of source tasks TS = Ts1,...Tsn where Tsi ∈ 
TS corresponds with Dsi ∈ DS, and a target task Tt which corresponds to Dt, transfer learning 

helps improve the learning of the target predictive function ft() in Tt where χt ∩ (χs1 ∪ ...χsn) = 
∅. 
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Figure 1: Example mappings from target T (two-dimensional data) to source S (three-dimensional data) 

Although FSR, GAFSR, and GrFSR focus on different feature spaces, they do not rely on 
the other dimensions of the transfer learning problem remaining constant. Indeed the 
datasets we use in the experimental section have differences in the marginal probability 
distributions as well as in the label space. As with all transfer learning problems we do 
rely on the basic assumption that there exists some relationship between the source and 
target areas which allows for the successful transfer of knowledge from the source to the 
target. 

When the feature spaces of the domains are different, we assume that they can be 
different both in terms of the number of dimensions and in the organization of the 
dimensions. To illustrate this point, consider two different domains, one consisting of two 
dimensional data and the other consisting of three dimensional data. It could be the case 
that the first two dimensions are the same in both domains (see Figure 1a); however, it 
could also be the case that the first two dimensions of the target domain correspond with 
the last two dimensions of the source domain (see Figure 1b), or perhaps only the first 
dimension of the target domain corresponds with the last dimension of the source 
domain. It may even be the case that the dimensions are entirely different, but a mapping 
between dimensions could still allow the knowledge gained in one domain to be used 
effectively in the other domain (see Figure 1c). FSR learns a mapping from the target 
feature space to the source feature space regardless of the exact differences between 
dimensions. 

In traditional machine learning, there are three basic types of techniques that are 
utilized based upon the availability of labeled data, supervised, unsupervised, and semi-
supervised. In transfer learning, the availability of labeled data can be different in the 
source and target domains, thus four general classes of techniques arise, informed 
supervised, informed unsupervised, uninformed supervised, uninformed unsupervised. 
We follow the definitions of Cook et al. (2012), where informed or uninformed refers to 
the presence or absence, respectively, of labeled data in the target domain, and supervised 
or unsupervised refers to the presence or absence of labeled data in the source domain. 
A few works have explored unsupervised transfer learning techniques (Dai, et al., 2008; 
Wang, et al., 2008) but we focus on supervised transfer learning in this paper. GAFSR and 
GrFSR are developed as informed supervised learning techniques. FSR can be applied to 
either the informed or uninformed case but for consistency we focus on the informed 
supervised learning technique. 
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2.2 Illustrative Example 

Before describing GAFSR, GrFSR, and FSR, we put forward an example transfer learning 
scenario to illustrate the concepts introduced throughout the discussion. To that end, let 
us consider the transfer learning problem for activity recognition in a smart environment 
using ambient sensors. 

Ambient sensors are typically embedded in an individual’s environment. Examples of 
ambient sensors may include motion detectors, door sensors, object vibration sensors, 
pressure sensors, and temperature sensors. As the name indicates, these sensors are 
designed to disappear into the environment while collecting a variety of activity related 
information such as human movements in the environment induced by activities, 
interactions with objects during the performance of an activity, and changes to 
illumination, pressure and temperature in the environment due to activities. Table 1 
shows some example data from a smart home with ambient motion sensors. 

Date Time Sensor Value 

2011-06-15 03:41:50.30088 M021 OFF 

2011-06-15 03:41:50.402649 MA020 OFF 

2011-06-15 03:44:50.862962 M021 ON 

2011-06-15 03:44:51.929508 M021 OFF 

2011-06-15 04:41:28.179357 M021 ON 

2011-06-15 04:41:29.333803 M021 OFF 

2011-06-15 05:33:44.024833 M021 ON 

2011-06-15 05:33:45.118382 M021 OFF 

2011-06-15 06:33:30.363675 M021 ON 

2011-06-15 06:33:31.437863 M021 OFF 

2011-06-15 06:33:33.878588 M021 ON 

2011-06-15 06:33:35.956492 M021 OFF 

2011-06-15 08:45:45.685723 M021 ON 

2011-06-15 08:45:46.789252 M021 OFF 

2011-06-15 08:46:03.646237 M021 ON 

2011-06-15 08:46:03.817155 MA020 ON 

2011-06-15 08:46:08.513192 M021 OFF 

2011-06-15 08:46:08.712314 MA020 OFF 

2011-06-15 08:46:09.87972 MA020 ON 

2011-06-15 08:46:12.103082 MA020 OFF 

2011-06-15 08:46:21.859339 MA020 ON 

2011-06-15 08:46:22.752142 M021 ON 

2011-06-15 08:46:23.885996 M021 OFF 

2011-06-15 08:46:25.199775 MA020 OFF 

2011-06-15 08:46:26.713111 MA020 ON 

2011-06-15 08:46:27.590115 M019 ON 

2011-06-15 08:46:29.876241 MA020 OFF 

2011-06-15 08:46:30.760636 M019 OFF 

2011-06-15 08:46:32.587806 M018 ON 

2011-06-15 08:46:36.329587 MA013 ON 

2011-06-15 08:46:37.117772 M018 OFF 

2011-06-15 08:46:45.86861 MA013 OFF 

Table 1: Sample of Sensor Events 

Suppose there are two homes (a source home and a target home) equipped with these 
ambient sensors. The source home already has an activity recognition model trained for 
that home. The target home does not yet have an activity recognition model trained. In 
order to use the model from the source home to recognize activities in the target home, 
they must use a common feature-space. A common approach to activity recognition using 
ambient sensors is to formulate the problem as a bag of sensors approach over some 
sliding window of time or sensor events. This means that the sensors from one home must 
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be mapped onto the sensors from the other home. Specifically, the features of one domain 
must map onto the features (or dimensions) of the other domain. This could be 
accomplished by mapping the sensors in the target home to the sensors in the source 
home, mapping the sensors in the source home to sensors in the target home, or mapping 
both the source and target sensors to a common set of generic labels ( for example, 
location-based mapping such as kitchen, bedroom, etc.). 

This mapping is just the initial step in the transfer learning. Once a shared feature-
space is achieved, additional transfer learning may be necessary to resolve differences in 
the marginal probabilities (the residents in one home may spend half the day sleeping, 
while the residents in the other home only sleep 6 hours a day) or differences in the 
classification task (the set of activities recognized may be different). The techniques we 
present here focus on achieving this initial transformation of the feature-space. 

3 Methods 

Traditionally, domain adaptation problems have focused on the case when Ds ≠ Dt, usually 
because P(Xs) ≠ P(Xt). For example, in activity recognition, the behavior of an individual may 
change over time, multiple individual may utilize the same space differently. This creates 
situations where the feature-space has not changed but the probability distribution of the 
features over that feature-space has changed. When domain adaptation has been applied to 

problems where χs ≠ χt there is usually a trivial transformation between feature spaces. An 
example of this is found in document classification, where the domain dimensions are 
typically word counts in each document. To compare documents with different words, a user 
can set the word counts for the unseen words to zero. This allows the user to easily define a 
common feature space between documents. Additional transfer learning techniques may still 
be necessary because P(Xs) ≠ P(Xt) but the initial feature-space transformation is trivial. This 
trivial transformation works because the semantic meaning of the dimensions is assumed to 
be known. 

Activity recognition aims to identify activities as they occur based on data collected by 
sensors. Advances in pervasive computing and sensor networks have resulted in the 
development of a wide variety of sensor modalities that are useful for gathering 
information about human activities. The feature-spaces in these type of activity 
recognition problems are often difficult to align because there is no trivial transformation 
between feature-spaces. 

In this work we present a heterogeneous transfer learning algorithm where the 
feature space must be transformed in a non-trivial manner. The semantic meaning of the 
dimensions is assumed to be either unknown or incompatible between the source and 
target domains. In the activity recognition domain this is equivalent to having sensor 
values but not knowing from which sensor (type or location) it originated. Unlike many 
other heterogeneous transfer learning techniques, we do not rely on co-occurrence data 
such as dictionaries, social annotations of images, or multi-view data. Additionally, we do 
not assume that P(Ys|Xs) = P(Yt|Xt) or even that Ys = Yt but we do assume that they must 
still be related. 

To achieve the desired feature-space transformation, we view the problem as a new 
machine learning task to learn a mapping from each dimension in the target feature space 
to a corresponding dimension in the source feature space. More formally this can be 



8 

written as follows: Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys find a 

mapping θ(χt, χs) such that errorθ(Hs) is minimized where errorθ(Hs) represents the 

empirical error on the target domain by using Hs on the mapped target data. Notice the 
distinction between this problem definition and other approaches typically applied to 
heterogeneous transfer learning. Traditional heterogeneous transfer learning 
approaches usually map source features to target features or source and target features 
to a common feature space and then learn a hypothesis on this common feature space. In 
our approach however, we map the target features to source features and we use an 
already learned hypothesis to guide the mapping process and avoid the duplication of 
work. If the mapping process proceeded in the other direction we would need to relearn 
a new hypothesis for each step of the search which would greatly increase the 
computational complexity of these techniques. By mapping from target to source we also 
gain the ability to combine multiple data sources through ensemble learning which will 
be discussed in Section 4. It is possible to relearn a new hypothesis after performing the 
mapping. It is also possible to apply additional transfer learning approaches after first 
obtaining a unified feature-space. 

The number of possible mappings between source and target feature spaces grows 
exponentially as the number of features increases. Even for lower dimensional data, 
searching through all possible mappings quickly becomes computationally infeasible. 
First we present Genetic Algorithms for Feature-Space Remapping (GAFSR) which 
explores the search space using random permutations of possible mappings. This method 
is the most computationally expensive but also explores the largest amount of mapping 
space. Next we present Greedy Search for Feature-Space Remapping (GrFSR) which 
applies the fitness function of the genetic algorithm to greedily select an approximation 
to the optimal mapping without searching through all possible mappings. Finally, we 
present Feature-Space Remapping (FSR) which uses less computationally expensive 
heuristics to select an approximation to the optimal mapping. 

The techniques we propose generate a many-to-one mapping. This is because multiple 
dimensions (features) in the target space can be mapped to a single feature in the source 
space but one feature in the target domain will never map to multiple features in the 
source domain. We could make the mapping stricter by enforcing a one-to-one mapping 
(with null mappings allowed) or we could relax the mapping by allowing weighted many-
to-many mappings. However, if we allowed a many-to-many mapping the search space 
(which is already too large for brute-force searching) would grow even larger. For many 
situations, a many-to-one mapping makes the most sense intuitively. For example, 
consider a hallway which is lined with several narrow-view motion sensors in one 
apartment and a hallway which has a single wide-view motion sensor in another 
apartment. Each narrow-view motion sensor could map to the single wide-view motion 
sensor in the other apartment but the wide-view motion sensor should just map to the 
single narrow-view motion sensor which best encapsulates its behavior. 
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After the mapping has been obtained, the mapping must be applied to the target data 
to be classified using the hypothesis learned on the source data. Because these techniques 
produces a many-to-one mapping, the procedure for combining the multiple dimensions 
must also be defined. For dimensions with numerical values, one could use an aggregate 
value such as minimum, maximum, total, or average. For categorical values, one could use 
a voting protocol. For each instance in the target data the features are mapped to the 
source features. When multiple features in the target data are mapped to single feature in 
the source data, the feature values are combined using the specified aggregation protocol. 
In this work we use the summed value to aggregate target features mapped to the same 
source feature. The entire process is summarized in Figure 2. The three techniques differ 
in how they create the map but the rest of the steps are all identical. 

3.1 Genetic Algorithm Feature-Space Remapping 

The goal of the GAFSR technique is to find a near optimal mapping θ(χt, χs) such that the 

error of the hypothesis on the target data is minimized. If n is the number of features in χs 

and m is the number of feature in χt then there are nm possible mappings, making it 
impractical to try all possible mappings. Instead, GAFSR uses a standard genetic algorithm 
approach to explore the search space looking for reasonable solutions. 

Genetic algorithms are a class of local search techniques which has been studied for 
the past several decades (Mitchell, 1998; Russell & Norvig, 2010). The motivation for 
genetic algorithms is rooted in the biological process of reproduction and evolution 
(Goldberg & Holland, 1988). The basic idea is to start with a random population of strings 
(chromosomes) and evaluate their fitness according to a specified function (the fitness 
function). Chromosomes pairs are then selected (usually probabilistically according to the 
normalized fitness score) and the selected chromosomes are mated via crossover to 
produce new offspring. This process is then repeated a number of times until a stopping 
criterion is met. Pseudo-code for GAFSR is found in Algorithm 1. The key components of 
a genetic algorithm are: the chromosome definition, the fitness function, and the mutation 
parameters. Each are described below. 

The chromosome is defined such that each sensor in the target dataset is a gene with 
n+1 possible values (1 for each source feature plus a null feature), thus the chromosome 
is composed of m genes with n + 1 possible values for each gene. From a practical 
standpoint, n can be seen as the number of sensor in the source domain and m can be seen 
as the number of sensor in the target domain when using a bag of sensors approach to the 
activity recognition problem. 

 

Apply Map 

Mapped  
Target Data  

Classify Output  

Source  
Data  

Create Map 

Source 
Data 

Target 
  Data 

Figure 2: Flowchart of the mapping process 
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Algorithm 1: GAFSR Algorithm 

 
Data: Xt Target Features 

Data: Xy Source Features 

Data: s population size, g number of generations 

Data: c cross-over rate, r mutation rate 

Generate s initial random mappings from Xt to Xy // i.e. Chromosomes  

for i ← 0 to g do 

Evaluate fitness of each mapping; 

Select pairs of mappings probabilistically weighted according to fitness; 

With probability c, Swap portions of mappings between the selected pair; 

With probability r, Mutate the mappings; 

Evaluate fitness of each mapping; 

Return mapping with best fitness; 

 

We compare two different fitness functions based upon the unweighted average recall 
(UAR) and the accuracy (ACC) of the target dataset obtained using a naïve Bayes classifier 
which has been trained on the source dataset. The unweighted average recall is given by 
Equation 1 and the accuracy is given by Equation 2. In both of these equations N is the 
total number of instances, K is the number of labels, and A is the confusion matrix where 
Aij is the number of instances of class i classified as class j. 

 
𝑈𝐴𝑅 =

1

𝐾
 ∑

𝐴𝑖𝑖
∑ 𝐴𝑖𝑗
𝐾
𝑗=1

𝐾

𝑖=1

 (1) 

 
𝐴𝐶𝐶 =

1

𝑁
∑𝐴𝑖𝑖

𝐾

𝑖=1

 (2) 

The first fitness function, given in Equation 3, is defined as just the UAR of the target 
dataset obtained using a naïve Bayes classifier which has been trained on the source 
dataset. We use the average recall instead of the overall accuracy because the datasets are 
imbalanced. A large percentage of the instances are represented by only a few class labels. 
Using the unweighted average class recall is one technique for accounting for this 
imbalance (van Kasteren, et al., 2008). The second fitness function, given in Equation 4, is 
defined as the twice the UAR plus the overall accuracy (ACC) on the target dataset 
obtained using a naïve Bayes classifier which has been trained on the source dataset. This 
function is chosen to improve the overall accuracy obtained by the mapping technique 
while still preserving the high unweighted average recall. 

 F1 = UAR (3) 
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 F2 = ACC + 2 ∗ UAR (4) 

The parameters of the genetic algorithm are chosen using limited validation testing to 
find parameters which yield decent results. They are set to the following values: 

• Population Size: 118 

• Mutation rate: .06 

• Crossover rate: .80 

• Crossover type: 2-point cross-over 

• Number of Generations: 100 

 
In addition, we use the technique referred to as elitism where the best solution so far 

is preserved across generations. This prevents the algorithm from losing the best solution 
due to the random mutations and crossovers. 

The asymptotic runtime of the proposed genetic algorithm is O(S ∗G∗N ∗ds) where S is 
the size of the population, G is the number of generations N is the number of labeled target 
instances and ds is the number of dimensions in the source feature-space. We have 
purposely excluded the cost of creating the population for each generation because the 
cost of the fitness function shown here is the dominating factor. For the size of the activity 
recognition datasets we test here, S ∗G ≈ d2s giving us an asymptotic runtime of 𝑂(𝑁 ∗ 𝑑𝑠

3). 

 

3.2 Greedy Search for Feature-Space Remapping 

An alternative to genetic methods for searching a space is applying a greedy search, which 
does not rely on the partially-random biologically-inspired search mechanism found in 
genetic algorithms (Russell & Norvig, 2010). To compare our genetic solution to a greedy 
approach, we introduce GrFSR which applies the same fitness function employed by the 
genetic algorithm to greedily search through the mapping space and find an 
approximation to the best mapping function. 

The greedy algorithm selects a single feature in the target domain to consider. It then 
maps this feature to all possible features in the source domain one at a time ( including 
the null feature, which in effect ignores the corresponding feature in the target domain) 
while all other features in the target domain are mapped to null. The resulting mapping is 
applied to the labeled target data and tested using the hypothesis obtained from the 
source data. The mapping that produces the best result according to Equation 4 is selected 
as the best mapping for that target feature. This is repeated for all the target features. A 
final mapping is produced by combining the best mapping produced for each target 
feature. Pseudo-code for the algorithm is given in Algorithm 2. 

The asymptotic runtime of GrFSR is O(ds ∗ dt ∗ N ∗ ds) where ds is the number of 
dimension in the source feature-space, dt is the number of dimension in the target feature-
space and N is the number of labeled data instance in the target domain. This runtime is 
equivalent to O(N∗d3) if ds ≈ dt. 
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Algorithm 2: GrFSR Algorithm 

 
Data: Xt Target Features 

Data: Xs Source Features 

 

3.3 Feature Space Remapping 

In Feature Space Remapping, rather than exploring the entire search space of possible 
mappings we instead use heuristics to select a mapping that approximate the optimal 
mapping. Feature-feature, feature-instance or instance-instance co-occurrence data 
could be used to guide the search but FSR operates under the assumption that this type 
of data is not available. Instead FSR computes meta-features as a means to relate source 
and target features. These meta-features can be defined and computed multiple ways 
which will be discussed in Section 3.4. Algorithm 3 shows the pseudo-code for the FSR 
technique and each step is discussed in detail below. To simplify the presentation of the 
FSR algorithm, for now let us assume that meta-features have already been calculated for 
the source and target features. One can think of the meta-features as a vector of numbers 
assigned to each feature in the source and target space. These vectors can then be 
compared to each other to find features with similar meta-features. 

FSR computes a similarity matrix S between source features and target features. This 
is done by computing a similarity score for each feature-feature pair based upon the meta-
features computed for the given features. The similarity score is computed as the average 
similarity between the source and target meta-feature values. Formally, this score is given 
by Equations 5 and 6. 

 
𝑆𝑥𝑦 =

1

𝑁
∑Ω(𝑚𝑥

𝑖 , 𝑚𝑦
𝑖 )

𝑁

𝑖=1

 (5) 

where x is the xth source feature, y is the yth target feature, N is the number of meta-
features and Ω is the normalized similarity between two meta-features 𝑚𝑥

𝑖  and 𝑚𝑦
𝑖 , the 

ith meta-feature of feature x and y respectively. We calculate the normalized similarity 
between two meta-features as the absolute value of the difference between meta-feature 
values divided by the maximum possible difference between the meta-features to obtain 
a normalized value between 0 and 1. This is shown in Equation 6. 

 

 

Ω(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖 ) = 1 − 
|𝑚𝑥

𝑖 −𝑚𝑦
𝑖 |

max(𝑚𝑥
𝑖 ,𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡) − min(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡)
 (6) 

for x ∈ X t do  
for y ∈ X s do  

fit[ y ] ← Fitness( x → y )  ;  

mapping[ x ] ← max(fit);  

Return mapping;  
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Algorithm 3: FSR Algorithm 

 
Data: Xt Target Features 

Data: Xy Source Features 

 

If the meta-feature values are all positive, which is the case for the experiments we 
show here, the normalized similarity equation can be simplified to: 

 

 
Ω(𝑚𝑥

𝑖 ,𝑚𝑦
𝑖 ) = 1 − 

|𝑚𝑥
𝑖 −𝑚𝑦

𝑖 |

max(𝑚𝑥
𝑖 , 𝑚𝑦

𝑖 ∀𝑥 ∈ 𝐷𝑠∀𝑦 ∈ 𝐷𝑡)
 (7) 

 

FSR computes a mapping L : y → x by selecting source feature x with maximal 
similarity to target feature y as given by the similarity matrix S. 

 L(y) = argmax
𝑥∈𝐷𝑠

(𝑆𝑥𝑦)   (8) 

If we assume the meta-feature computation is linear, FSR has a running time of O(ds ∗ 
dt + n + m) where ds and dt is the dimensionality of the source and target data, respectively, 
and n and m are the number of source and target instances, respectively. This runtime is 
explained by the following observations. First, each dimension in the target domain is 
compared to each dimension in the source domain, resulting in the ds ∗ dt term. Second, 
assuming the meta-feature computation is linear in the number of data instances, then 
computing the meta-features requires O(n + m) time. Finally, applying the mapping 
requires a single pass through the target data or O(m) time. 

As mentioned earlier, the defining and calculating of meta-features can be done in 
multiple ways. If some labeled target data is available, it can be used to calculate domain-
independent meta-features (i.e. meta-features that can be applied to any heterogeneous 
transfer learning problem). We refer to this as Informed Feature Space Remapping (IFSR) 
because it requires the labeled target data. If no labeled target data is available then 
domain-dependent meta-features must be defined. We refer to this as Uninformed 

for x ∈ X t do  
metas[ x ] ← ComputeMetaFeatures(x);  

for x ∈ X s do  
metas[ x ] ← ComputeMetaFeatures(x);  

for x ∈ X t do  
for x ∈ X s do  

similarity[ x ][ y ] ← ComputeSimilarity(metas[ x ] , metas[ y ])  

for x ∈ X t do  
mapping[ x ] ← max(similarity[ x ;  ])  

Return mapping;  



14 

Feature Space Remapping (UFSR) because it does not require the label target data. In this 
paper we only present the IFSR technique as it achieves better results than UFSR and is 
consistent with the other techniques. 

 

3.4 Informed Feature Space Remapping 

Searching through all possible mappings to find the mapping which minimizes the error 
of the hypothesis on the target data is computationally expensive. However, since the 
hypothesis has been learned using the source training data one would expect the error to 
be minimized by selecting mappings for which the feature-label co-occurrence data is 
similar in the source and target datasets. This leads to our first heuristic for mapping 
source and target features. IFSR computes the feature-label co-occurrence data for each 
feature in the source and target space by calculating the expected value of the feature 
given the label using the labeled training data. More formally, if Y = Ys ∪ Yt then the feature-
label co-occurrence data for each feature and label is computed as: 

 

 
𝐸(𝑥|𝑐) =

1

𝑛𝑐
 ∑𝑥𝑖

𝑛

𝑖=1

   (9) 

 

where x is the feature, c is the label such that c ∈ Y , nc is the number of data instances with 
label c, xi is the value of feature x on the ith data instance with a label of c. This assumes a 
real-valued number space. One could easily extend this to categorical values by using the 
count of occurrences of each category as an estimation of the probability that the given 
feature will have the given categorical value. 

Each feature-label co-occurrence value now becomes a meta-feature for the given 
feature. Thus E(x|c) is a meta-feature for feature x and x will have z = |Y | such meta-
features, one for each label c. Using feature-label co-occurrence data as a meta-feature 
keeps the FSR asymptotic run time within the previously stated bound of O(ds∗dt+n+m). 
This is because the meta-feature calculation is linear in the number of instances. We 
compute E(x|c) for each label c ∈ Y . This can be done in a single pass through the datasets 
and thus requires O(n + m + y) time. Typically n >> y and m >> y so this term can be 
simplified to just O(n + m). 

Additionally, using feature-label co-occurrence data for the meta-features provides 
domain independent meta-features so that meta-features for the specific problem do not 
need to be specified by a domain expert. Thus any domain for which labeled data exists 
can apply this feature mapping technique without setting any parameters, defining any 
relations, or defining any additional meta-features. 

To understand why using the feature-label co-occurrence data as a heuristic to find an 
approximation to the optimal mapping works we go back to the original problem 

definition. Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys find a mapping 

θ(χt, χs) such that errorθ(Hs) is minimized. This error is minimized by maximizing the 

number of agreements between HS(θ(q)) and ft(q) as shown in Equation 10 where q is a 
data instance in Xt and θ(q) is the mapped data in the source domain space. 
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max
𝜃

∑ {
1, 𝑖𝑓 𝐻𝑠(𝜃(𝑞)) = 𝑓𝑡(𝑞).

0, 𝑖𝑓 𝐻𝑠(𝜃(𝑞)) ≠ 𝑓𝑡(𝑞).𝑞∈𝑋𝑡

 (10) 

A naïve Bayes classifier can learn a hypothesis by estimating P(c) and P(qi|c) based 
upon their observed frequencies and applying Bayes rule to estimate the posterior 
probability P(c|q). The class c with the highest posterior probability is selected as the class 
label for q (Mitchell, 1997). Thus, if the hypothesis is expressed as a naïve Bayes classifier 
and if we approximate the true predictive function ft() also using a naïve Bayes 
formulation then Equation 10 can be expressed as shown in Equation 11. 
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 (11) 

 
Under this representation, selecting the mapping for each feature that has the most 

similar feature-label co-occurrence value can be seen as a greedy approximation to 
minimize the empirical error on the mapped target data. Indeed, when the feature values 
are restricted to either 0 or 1, the feature-label co-occurrence value E(x|c) is equivalent 
to the estimation of the probability that the feature has a value of 1 given the class label, 
P(x = 1|c). 

4 Combining Multiple Data-sources 

One of the major benefits of the above mapping approaches is that they can be used to 
combine data from multiple source domains in a straightforward manner. One example 
where multiple source domains might arise is a single individual with labeled data in 
multiple smart environments (home, office, car, etc.). Another example would be multiple 
smart apartments with labeled data which can be used to recognize activities in new 
smart apartment. An ensemble classifier can be built by mapping the target domain to 
each source domain and training a separate base classifier for each source domain. The 
output from these source classifiers can then be combined by the ensemble meta-
classifier to make the final prediction. We refer to this as Ensemble Learning via Feature-
Space Remapping (ELFSR). 

Ensemble methods have been used in a variety of situations with great success. 
According to Hansen and Salamon, a necessary and sufficient condition for ensemble 
classifiers to be more accurate than any of the individual classifiers are for the classifiers 
to be accurate and diverse (Hansen & Salamon, 1990). An accurate classifier is one which 
has a classification accuracy better than random guessing (Dietterich, 2000). Two 
classifiers are diverse if the errors they make are different (and preferably uncorrelated) 
(Dietterich, 2000). Most ensemble techniques defined to date generate a set of diverse 
classifiers. Bagging, for example, generates classifiers by repeatedly subsampling the 
original data with replacement (Breiman, 1996). Boosting iteratively reweights samples 
based on the accuracy of the previous iteration (Goldberg & Holland, 1988). In ELFSR, 
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each classifier is drawn from a different domain, leading to a naturally diverse set of 
classifiers. 

Once the classifiers are generated, the output must be combined to obtain the final 
result. Several approaches have been used including majority voting, weighted voting, 
summing the probabilities, and training a new learner on the output of the classifiers or 
stacking (Wolpert, 1992). Stacking is a supervised technique and thus requires additional 
labeled data to train the ensemble classifier. This means that stacking can be readily 
combined with IFSR, which already uses labeled data. 

Work on ensemble classifiers for transfer learning has mainly focused on boosting 
techniques (Pan, et al., 2012; Xian-ming & Shao-zi, 2009; Yao & Doretto, 2010). As there 
has been very little work on transfer learning using voting or stacking ensemble 
classifiers, we compare the results of several different ensemble configurations using 
activity recognition from multiple smart apartments as the source domains and activity 
recognition for a different smart apartment as the target domain. Specifically, we consider 
two voting ensembles (a majority voting ensemble and a summation voting ensemble), 
and two stacking ensembles (via naïve Bayes and via a decision tree). The voting 
ensembles have the advantage of not requiring any labeled data in the target domain, 
while the stacking techniques require a small amount of labeled data. 

4.1 Voting Ensemble 

One of the simplest methods for combining multiple classifiers is through majority voting. 
Each classifier votes for the class label it predicts for the given instance and the label 
receiving the most votes wins. 

The drawback to the majority voting ensemble classifier is that the ensemble throws 
away important information by only considering the most likely label as predicted by 
each classifier. The summation voting ensemble classifier rectifies this weakness by 
summing up the predicted probability of each label for each classifier and then assigning 
the label with the highest summed probability. 

4.2 Stacking 

In stacking, the output of each source classifier is fed into the ensemble classifier which 
then produces the final classification. Here we consider two different classification 
algorithms for the ensemble classifier, naïve Bayes and decision trees. One of the 
drawbacks to using stacking is the requirement of labeled data to train the ensemble 
classifier. Rather than test both FSR and IFSR with the stacking technique we only 
consider the result of using IFSR since IFSR already uses a small amount of labeled data 
in the target domain. We use stacking with IFSR without requiring any additional labeled 
data in the target domain. 

5 Experimental Results 

GAFSR, GrFSR, and FSR can be applied to a variety of different transfer learning problems. 
Here we evaluate the performance of these techniques in the activity recognition domain 
under the following scenarios: 
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• Experiment 1 (Fitness Function): Show the effect of the choice of the fitness function on 
the performance of GAFSR. 

• Experiment 2 (FSR Comparison): Evaluate the performance of the FSR techniques in 
comparison to several baselines including a manual mapping strategy and a strategy 
that does not employ transfer learning. 

• Experiment 3 (Learning Curve): Show the effect of the amount of labeled data available 
in the target domain on the performance of the FSR algorithm. 

• Experiment 4 (ELFSR Comparison): Evaluate the performance of the ELFSR techniques 
in comparisons to several baseline techniques. 

• Experiment 5 (ELFSR Learning Curve): Show the effect of the number of source 
apartments used in the ensemble techniques. 

5.1 Data 

We use a dataset consisting of data from 18 different smart apartments. The apartments 
are single residence assisted-living care facilities. Specific statistics for each apartment 
are found in Table 2. Each apartment is equipped with motion sensors and door sensors. 
The number of sensors range from 17 to 39 with an average of 28.7 sensors and a 
standard deviation of 6.21. The layout for the apartments is shown in Figure 3. Each 
dataset has been annotated with 37 different activities, shown in Table 3, with the total 
amount of labeled data spanning one month of time per dataset. Not all apartments have 
all 37 activity labels as indicated in the table. We consider all possible combinations of 
source and target datasets, yielding a total of 306 possible pairings. We use a single day 
of labeled data for the target domain and all 30 days of labeled data for the source domain. 

Id # Features # Labels # Instances # UFSR 
Meta-Features 

# IFSR 
Meta-Features 

1 35 29 133157 1575 1295 
2 17 26 53669 765 629 
3 37 31 178137 1665 1369 
4 29 29 57918 1305 1073 
5 39 32 141181 1755 1443 
6 26 32 149391 1170 962 
7 26 30 183945 1170 962 
8 26 28 98768 1170 962 
9 34 30 102466 1530 1258 
10 24 30 143145 1080 888 
11 38 30 157736 1710 1406 
12 24 29 135451 1080 888 
13 32 32 116641 1440 1184 
14 26 31 195611 1170 962 
15 23 29 100255 1035 851 
16 33 32 179693 1485 1221 
17 23 29 92740 1035 851 
18 24 30 117067 1080 888 

Table 2: Summary statistics of the activity recognition dataset 
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We formulate the learning problem as that of mapping a sequence consisting of the 
most recent sensor events within a sliding window of length k to a label representing the 
activity to the last (most recent) event in the sequence. The sensor events preceding the 
last event define the context for this last event. Data collected in a smart home consists of 
events generated by the sensors. These are stored as a 4-tuple: (Date, Time, Sensor Id, 
Message) as shown in Table 1. 

To perform activity recognition, we extract features from data point i, where the data 
point corresponds to a sensor event sequence of length k. The vector xi includes values for 
the features summarized in Table 4. Each yi corresponds to the activity label that is 
associated with the last sensor event in the sequence. A collection of data points, xi, and 
the corresponding labels, yi, are fed as training data to a classifier to learn the activity 
models in a discriminative manner. The classifier thus learns a mapping from the sensor 
event sequence to the corresponding activity label. 

 
 

Activity Frequency Activity Frequency 
Enter Home 0.0031 Personal Hygiene 0.0545 
Eat Lunch 0.0070 Leave Home 0.0026 
Cook Dinner 0.0534 Eat Dinner 0.0100 
Exercise 0.0002 Cook Lunch 0.0274 
Wash Dinner Dishes 0.0127 Relax 0.0191 
Read 0.0103 Wash Lunch Dishes 0.0077 
Phone 0.0029 Evening Meds 0.0037 
Eat Breakfast 0.0101 Watch TV 0.0405 
Cook 0.0348 Wash Breakfast Dishes 0.0126 
Eat 0.0066 Groom 0.0087 
Housekeeping 0.0113 Toilet 0.0434 
Wash Dishes 0.0088 Work At Desk 0.0004 
Sleep Out Of Bed 0.0034 Work At Table 0.0253 
Morning Meds 0.0053 Cook Breakfast 0.0320 
Take Medicine 0.0036 Bed Toilet Transition 0.0156 
Bathe 0.0175 Work 0.0329 
Other Activity 0.2789 Entertain Guests 0.0837 
Sleep 0.0407 Work On Computer 0.0498 
Dress 0.0194   

Table 3: List of activities and the relative frequency of occurrence of each activity 

5.2 Fitness Function 

First, we consider the effect of the choice of fitness function on overall performance. 
Performance is measured using both the accuracy (given by Equation 2) and the 
unweighted average recall (given by Equation 1). We report both the accuracy and the 
recall because accuracy scores are biased towards the majority class. For balanced class 
distributions this has little effect on the metric, but it may not be suitable for unbalanced 
class distributions. Using the unweighted average recall eliminates this bias and treats all 
classes equally (van Kasteren, et al., 2008). Note that accuracy can also be considered as 
the average recall weighted by the number of instances in the class. 
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Figure 3: Apartment layouts for the 18 smart apartments used in the experiments. 

 

1 ( a ) Apt. 2 ) Apt. b ( ( c ) Apt. 3 4  ( d ) Apt. 

( e ) Apt. 5 ) ( f Apt. 6 ( ) 7 Apt. g ( h ) Apt. 8  

9 ( i ) Apt. ( j ) Apt. 10 ( k ) Apt. 11 ( l ) Apt. 12  

( m ) Apt. 13 ( n ) Apt. 14 ( o ) Apt. 15 ( p ) Apt. 16  

( q ) Apt. 17 ( r ) Apt. 18  
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Feature # Value 

1 Time of day of the latest sensor event in the sliding window 

2 Day of week of the latest sensor event in the sliding window 

3 to n + 3 Number of occurrences of each sensor in within the current 
window (n sensors) 

Table 4: The feature vector describing a data point under the first feature representation. 

5.3 Fitness Function 

First, we consider the effect of the choice of fitness function on overall performance. 
Performance is measured using both the accuracy (given by Equation 2) and the 
unweighted average recall (given by Equation 1). We report both the accuracy and the 
recall because accuracy scores are biased towards the majority class. For balanced class 
distributions this has little effect on the metric, but it may not be suitable for unbalanced 
class distributions. Using the unweighted average recall eliminates this bias and treats all 
classes equally (van Kasteren, et al., 2008). Note that accuracy can also be considered as 
the average recall weighted by the number of instances in the class. 

Figure 4 shows the results averaged over all 306 pairings. In this case we use the full 
30 days of labeled data in both the source and target domain as we are interested only in 
the relative performance difference between the two fitness functions. As can be seen in 
the figure, including the overall accuracy in the fitness function significantly improves the 
accuracy without a significant drop in the unweighted recall. 

5.4 FSR Comparison 

Next, we compare the three proposed techniques, GAFSR, GrFSR, and IFSR, against several 
other baselines. GAFSR and GrFSR use the fitness function specified in Equation 4. IFSR 
uses the feature-label co-occurrence meta-features as described in Equation 9. 

 

 

Figure 4: Average accuracy and recall scores over all 306 source-target pairings. Including 
the accuracy score in the fitness function improves accuracy without degrading the 
average recall. 
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The first baseline, Manual, uses the generalized sensor locations (kitchen, bedroom, etc.) 
to map sensors from one apartment to another. The second baseline, None, treats all 
sensor events as coming from a single source. Essentially this eliminates the sensor 
dimension and only considers the time of day and day of week of the activity. The Manual 
technique is the mapping technique currently used by most researchers in activity 
recognition (Cook, et al., 2012; Rashidi & Cook, 2011; van Kasteren, et al., 2008). It does 
not require any labeled data in the target domain, but it does require the manual 
definition of sensor locations. On the other hand, None provides a lower bound on the 
expected performance. The last baseline we consider, Self is a classifier trained and tested 
in the target domain. All of the techniques use a naïve Bayes classifier trained on the 
source domain and tested on the target domain. We considered other base classification 
algorithms such as SVMs, Decision Trees and Nearest Neighbors. However, since the 
meta-features used in IFSR are specifically related to naïve Bayes classification we have 
found that it gives good results without the computational overhead of some of the other 
methods. For comparison purposes, we also include results for IFSR when a decision tree 
has been used as the base classification method. 

The results are shown in Figure 5. A one-way ANOVA is performed and the resulting 
p-value is less than .0001. The 95% confidence interval is depicted with the error bars. 
All three techniques match or beat the two baselines of Manual and None. As the amount 
of time spent exploring or computing a good mapping between the target and source 
domains increases the resulting accuracy, recall and precision scores also increases. 
GAFSR achieves the best performance scores under all three metrics but it also requires 
the most time to run, while IFSR uses the fewest number of computations but also has 
lower performance scores. Note that the performance gap between IFSR and GrFSR is 
much smaller than the gap between GAFSR and GrFSR and is even reversed for the 
precision metric. None of the techniques are able to match a classifier trained and tested 
in the source domain. This provides evidence that applying additional domain adaptation 
techniques may be beneficial. 

 

Figure 5: Classification accuracy and recall on the target domain using a single source 
domain. Manual and None provide baseline comparisons. Manual is the mapping 
specified by a domain expert. None does not apply any mapping at all. GAFSR, GrFSR and 
IFSR are all able to perform as good as or better than the Manual technique. The 
performance of GAFSR, GrFSR, and IFSR is ordered by the computational complexity of 
each technique, highlighting the benefit of exploring the mapping space at the cost of 
increased running times. 
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The previously-discussed results are the average of 306 different mappings. 
Individual results show both higher and lower performance. One direction of transfer 
learning research focuses on how to select the best source dataset. Assuming this problem 
is solved then we could select the “best” source dataset for each target dataset. We do not 
claim that this contributes to avoid negative transfer, only that if negative transfer can be 
predicted and avoided we can improve the results. Figure 6 shows the results of using the 
best source dataset with the same mapping techniques discussed earlier. Under this 
scenario, the accuracy scores of the three techniques are nearly equivalent with IFSR 
actually performing the best. The recall scores of the three techniques continue to be 
ordered by the computational complexity of the technique. Again all three techniques are 
able to outperform the baseline techniques of Manual and None but this time they even 
match or beat the performance of Self. A one-way ANOVA is performed and the resulting 
p-value is less than .0005. The 95% confidence interval is depicted with the error bars. 

5.5 FSR Learning Curve 

The next experiment shows the effect of the amount of labeled target data on the accuracy 
and recall score of the IFSR algorithm. As in the previous experiments, we use the 306 
possible pairings of the activity recognition datasets. However, this time we vary the 
number of days of labeled target data from 1 to 30. Figure 7 shows the results. Clearly, 
adding more labeled target data is initially beneficial. However, the increase in accuracy 
begins to level off after approximately ten days of labeled target data. The increase in 
recall appears to peek between five and ten days of labeled target data after which point 
the recall score declines slightly. This may indicate that having too much labeled data 
causes IFSR to overfit the data. 

Figure 6: Classification accuracy and recall on the target domain using the best single 
source domain. This assumes that the best dataset to transfer from could be identified a 
priori. Manual and None provide baseline comparisons. Manual is the mapping specified 
by a domain expert. None does not apply any mapping at all. A one-way ANOVA is 
performed and the resulting p-value is less than .0005. The 95% confidence interval is 
depicted with the error bars. 
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5.6 ELFSR Comparison 

Having examined the trade-off between the computational complexity and the performance 
results of the GAFSR, GrFSR, and IFSR techniques, the remaining results focus on combining 
multiple source datasets using ELFSR. In these experiment we have used ELFSR with the IFSR 
technique but GAFSR or GrFSR could be used as well. We consider different voting and 
stacking ensemble techniques which utilize data from multiple source datasets. IFSR-Maj 
refers to using ELFSR in a majority voting ensemble. IFSR-Sum refers to using ELFSR in a 
summed probability ensemble. IFSR-Bayes and IFSR-Tree refer to using ELFSR in a stacked 
ensemble using a naïve Bayes classifier or Decision Tree classifier, respectively, as the 
ensemble learning algorithm. We include several additional baseline techniques here. Self 
uses a naïve Bayes classifier which has been trained on the target dataset using 3-fold cross-
validation and all 30 days of labeled data. Combined combines all of the source domain data 
into one big dataset with sensor mappings being manually defined by location. The naïve 
Bayes classifier is trained on all of the source data and then tested on the target data. The 
ensemble techniques each train one naïve Bayes classifier per source dataset and the 
ensemble is then tested on the target domain. Each stacking ensemble is trained using one 
day’s worth of labeled data in the target domain.  

Figure 8 shows the results using the voting ensemble techniques while Figure 9 shows the 
results using the stacking ensemble techniques. In neither case do we attempt to select the 
best source datasets: we simply use all available source datasets.  

Figure 7: IFSR accuracy and recall scores as the amount of labeled target data used to 
make the mapping from target feature space to source feature space increases. Accuracy 
continues to show improvement with the increase of labeled target data while the recall 
score appears to peek with between five and ten days of labeled data in the target domain 
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The IFSR voting ensembles perform comparably to the combined dataset. This is 
consistent with the previous results where IFSR performs comparably to the Manual 
technique. The trade-off is where the human effort is required. The combined dataset requires 
a manually-mapped specification while the IFSR voting ensembles require a small amount of 
labeled data in the target domain. 

The performance of the IFSR stacking ensembles stand out above the rest. Both 
stacking ensembles achieve higher performance in terms of the accuracy and recall scores 
than the combined dataset or the Self classifier. It does this using only a single day’s worth 
of labeled data and no manual mapping is required. The Self approach uses nearly 30 days 
of labeled data and is trained and tested on the same dataset (with cross-validation), 
while the Combined approach uses no labeled data in the target domain but requires a 
manual mapping to be specified. 

Figure 8: Classification accuracy and recall on the target domain using multiple source 
domains with a voting ensemble. Self and Combined provide baseline comparisons. Self is 
the result when the source and target dataset are the same and uses the all the labeled 
target data, while Combined uses the mappings provided by a domain expert to build a 
generic classifier. Matching the performance of Combined is a positive result. 

Figure 9: Classification accuracy and recall on the target domain using multiple source 
domains with stacking ensembles. Self and Combined provide baseline comparisons. Self 
is the result when the source and target dataset are the same and uses the all the labeled 
target data, while Combined uses the mappings provided by a domain expert to build a 
generic classifier. The performance of IFSR-Bayes and IFSR-Tree both manage to beat 
these baselines representing a considerable gain for the transfer learning techniques. 
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5.7 ELFSR Learning Curve 

In addition to comparing the performance of ELFSR against other baseline techniques we 
also consider how the number of source datasets affects the performance achieved by the 
techniques. Figure 10 shows the learning curve for each ensemble technique as the 
number of source datasets increases. For IFSR-Sum, IFSR-Bayes, and IFSR-Tree, the 
performance increases with an increasing number of datasets. Most of the improvement 
is achieved within the first seven datasets, after which performance improvement tapers 
off. For IFSR-Maj, the accuracy performance improves with an increasing number of 
datasets, but the recall performance remains almost constant regardless of the number 
of datasets. This illustrates the fact that important distinguishing information is being 
discarded by the majority voting scheme. 

6 Conclusions 

In this paper we present novel heterogeneous transfer learning techniques for use in 
recognizing activities between different smart home environments. These techniques, 
transfer knowledge between domains with different feature spaces without using typical 
co-occurrence data. The datasets we tested on also had different marginal probability 
distributions on the domains, and different conditional probabilities. This makes the 
difference between source and target datasets greater than many previously attempted 
transfer learning problems. The key insight allowing these techniques to work is that by 
mapping the target features to the source features we are able to reuse an existing 
hypothesis to guide the search for ‘good’ maps. The proposed techniques can be 
generalized and applied to any heterogeneous transfer learning problem where labeled 
target data exists. The techniques are compatible with most other transfer learning 
techniques and could be applied as a pre-processing step to obtain a common feature 
space before applying traditional domain adaptation techniques. 

Figure 10: Learning curve for the ensemble classifiers where the number of source classifiers ranges from 
2 to 16. Each ensemble technique quickly improves with more source classifiers but the performance 
improvements then begin to level off. 

Number of Sources 
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Ensemble Learning via Feature-Space Remapping is introduced to combine multiple 
source datasets and achieve even greater classification accuracy. Using ELFSR we are able 
to outperform a classifier which has been trained and tested exclusively in the target 
domain using a full thirty days of labeled data, while ELFSR uses just a singled day of 
labeled data in the target domain. 

There are still many open research questions to pursue, including avoiding negative 
transfer effects and identifying the best sources for transfer. An additional future 
direction involves the combining of multiple dimensions. The techniques we have 
explored generate a many-to-one mapping of target dimensions to source dimensions. 
We suggest exploring additional ways of combining multiple dimensions as well as 
exploring enforcing a one-to-one mapping or relaxing the mapping to allow a many-to-
many mapping. Other challenges remain as well such as handling concurrent or 
interleaved activities. While there is still much research to be done, GAFSR, GrFSR and 
FSR are all promising new techniques to improve the transfer of knowledge between 
domains which will in turn lead to more robust activity recognition systems and learning 
systems in general. 
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