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PREPARING SMART ENVIRONMENTS FOR LIFE IN THE WILD:
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Abstract

by Kyle Dillon Feuz, Ph.D.
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May 2014

Chair: Diane J. Cook

With the ever-increasing abundance of sensing and computing devices embedded into

our environments we have the opportunity to create personalized activity recognition

ecosystems. Two key challenges must first be overcome, the new environment problem

and the new sensing platform problem. The new environment problem is encountered

every time a sensing platform is deployed to a new environment. The new sensing plat-

form problem is encountered every time a new sensing platform is deployed into an

environment with an existing sensing platform. We approach these problems as trans-

fer learning problems with heterogeneous feature-spaces, referred to as heterogeneous

transfer learning. We propose several novel algorithms for each setting. Additionally,

some theoretical work on the accuracy bounds and the run-time of the algorithms is also

presented.

Feature-Space Remapping (FSR) is proposed as a novel class of heterogeneous trans-

fer learning algorithms which can be applied to the new environment problem. These

algorithms are the first to perform heterogeneous transfer learning without requiring
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explicit linkage data. We show how these algorithms are able to outperform learning

a model generalized across different environments using relations between features as

specified by a domain expert. We also show how FSR can be used in conjunction with

ensemble learning to combine information from multiple datasets. This method outper-

forms the state-of-the-art by 10% to 20%.

Multi-view Transfer Learning is proposed as a solution to the new sensing platform

problem. In multi-view transfer learning the same instance can be seen from multiple

views or feature-spaces which facilitates transferring knowledge from one view to another.

We develop several new multi-view learning algorithms for this problem. Using a well-

trained view as a teacher, we show that the performance of new sensing platforms can

be increased by as much as 20% through multi-view learning. The teacher can also

be used to bootstrap a set of labeled training data for the new sensing platform which

removes the need to manually annotate data when introducing new sensing platforms.

We also provide bounds and an estimation of the learner’s accuracy when the ground

truth labeled data cannot be used to directly estimate the accuracy.
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Chapter 1

Introduction

Learning and understanding observed activities is at the center of many fields of study.

An individual’s activities affect that individual, those around him, society, and the

environment. The maturing of sensor and wireless network design has made it possible

to automate activity recognition from sensor data. The number and diversity of projects

that are utilizing activity recognition is exploding. Activity recognition is becoming an

integral component of numerous solutions to real-world problems including health care,

security surveillance, and context-aware services.

As the number of devices with sensing and computing capabilities increase a person-

alized activity recognition ecosystem may begin to emerge. Eventually, your smarthome,

your smartphone, your smartvehicle and your smartoffice will all be working together

to ensure your safety and satisfaction. However, if personalized activity recognition

ecosystems are going to be successful, two interesting challenges must be overcome: the

new environment problem and the new sensing platform problem. The new environ-

ment problem is encountered every time an activity recognition algorithm needs to be

trained for a new environment or a new sensor layout. This situation occurs every time

someone wants to install a new smart environment. The new sensing platform problem

is encountered every time a new sensing platform is introduced. These two problems are

not mutually exclusive as you could have a new sensing platform in a new environment.

Three approaches can be taken to solve these problems. First, labeled data for the
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Figure 1: In traditional machine learning, the training and testing data come from
the same domain and have similar distributions. In transfer learning, the training and
testing data are related but no longer the same. In other words, transfer learning uses
knowledge from a different but related problem to improve learning for the new problem.
The home, phone and jacket represent three different sensor platforms that could be used
in transfer learning.

new situation can be used to train a model for the specific situation. Second, labeled

data from a variety of situations can be used to train a model which generalizes across

the differences between the situations. Third, a new model, specific to the situation, can

be adapted from one or more existing models. The first approach does not scale well

due to the resource intensive nature of gathering labeled data. The second approach

may also require large amounts of labeled data or in some situations may not even

apply. For example, generalizing features across different sensor modalities may not

be feasible. This leaves us with the third approach which is commonly referred to as

transfer learning.

Transfer learning techniques have been proposed to specifically handle these types of

situations. Transfer learning algorithms seek to apply knowledge learned from a previous

task to a new, but related, task (See Figure 1). Heterogeneous transfer learning focuses



3

on transfer learning problems where the source and target domains are different because

they have different feature spaces. The intuition behind transfer learning stems from

the ability of humans to extend what has been learned in one context to a new context.

In the field of machine learning, the benefits of transfer learning are numerous; less time

is spent learning new tasks, less information is required of experts (usually human),

and more situations can be handled effectively, making the learned model more robust.

These potential benefits have led researchers to apply transfer learning techniques to

many domains with varying degrees of success.

We propose several novel heterogeneous transfer learning algorithms which can be

used to solve the new environment problem and the new sensing platform problem.

We can divide these techniques into two different classes of transfer learning algorithms

feature-space remapping (FSR) and multi-view transfer learning (MVTL). FSR reuses

an existing trained classifier by remapping the target data onto the source feature-space.

MVTL works by having data instances which are seen from multiple views or feature

spaces. This co-occurrence data can then be used to transfer knowledge from one view

to another. Most heterogeneous techniques require some form of linkage (co-occurrence

data, dictionaries, or domain experts) between the source and target dataset. FSR, on

the other hand, operates without any traditional linkage data. This makes it especially

suitable for the new environment problem which is likely to have a different feature-space

and to not have any instance-instance co-occurrence data. Multi-view transfer learning

is not suitable for the new environment problem because it relies on instance-instance

co-occurrence data. However, it is suitable for the new sensing platform problem when

an existing sensing platform is already in the environment.
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In conjunction with the goal of enabling the creation of personalized activity recog-

nition ecosystems, we put forth the following hypothesis or objectives to be evaluated:

Objective 1.1 Show the effectiveness of the FSR techniques in solving the new environ-

ment problem by comparing it against a model trained for the specific environment and

by comparing it against a model which has been generalized for different environments.

Objective 1.2 Show the effectiveness of the FSR techniques utilizing multiple source

domains in solving the new environment problem by comparing it against a model trained

for the specific environment and by comparing it against a model which has been gener-

alized for different environments.

Objective 1.3 Show the applicability of the FSR techniques to other domains by eval-

uating the performance of FSR for different document classification problems.

Objective 1.4 Show the effectiveness of the MVTL techniques in solving the new sens-

ing platform problem when two sensing platforms are introduced simultaneously to the

environment by comparing the MVTL techniques against models which have been trained

using only labeled data available specifically to each sensing platform.

Objective 1.5 Show the effectiveness of the MVTL techniques in solving the new sens-

ing platform problem when one sensing platform is introduced to an environment in

which another sensing platform is already in place and recognizing activities by compar-

ing the MVTL techniques against models which have been trained using only labeled data

available specifically to each sensing platform.

Objective 1.6 Show the effectiveness of the MVTL techniques in solving the new sens-

ing platform problem when three different sensing platforms are involved by comparing
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against the results of each MVTL technique when only two sensing platforms are in-

volved.

Objective 1.7 Show the applicability of the derived accuracy bounds by comparing the

observed accuracies and agreements between each sensing platform and the expected,

upper, and lower bounds of the accuracies of the sensing platforms.

Meeting these objectives will be shown in Chapter 5 but we first review the appli-

cable literature and describe our proposed approaches in detail. We present five FSR

algorithms: Genetic Algorithms for Feature-Space Remapping (GAFSR), Greedy search

for Feature-Space Remapping (GrFSR), Informed Similarity Feature-Space Remapping

(ISFSR), and Uninformed Similarity Feature-Space Remapping (USFSR). We show how

multiple source classifiers can be combined using Ensemble Learning with Feature-Space

Remapping (ELFSR). We also present six MVTL algorithms: Co-Training (CoTrain),

Co-Expectation Maximization (CoEM), Manifold Alignment (Man), Teacher-Learner

(Teach), Personalized Ecosystem (PECO), and Personalized Ecosystem with Ensembles

(PECO-E). The first four MVTL algorithms are extensions to existing multi-view learn-

ing techniques while the last two MVTL algorithms and all of the FSR algorithms are

completely novel.
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Chapter 2

Background

2.1 Introduction

Researchers in the artificial intelligence community have struggled for decades trying to

build machines capable of matching or exceeding the mental capabilities of humans. One

capability that continues to challenge researchers is designing systems which can leverage

experience from previous tasks into improved performance in a new task which has not

been encountered before. When the new task is drawn from a different population than

the old, this is considered to be transfer learning. The benefits of transfer learning are

numerous; less time is spent learning new tasks, less information is required of experts

(usually human), and more situations can be handled effectively. These potential benefits

have lead researchers to apply transfer learning techniques to many domains with varying

degrees of success.

One particularly interesting domain for transfer learning is human activity recog-

nition. The goal of human activity recognition is to be able to correctly classify the

current activity a human or group of humans is performing given some set of data.

Activity recognition is important to a variety of applications including health monitor-

ing, automatic security surveillance, and home automation. As research in this area

has progressed, an increasing number of researchers have started looking at ways trans-

fer learning can be applied to reduce the training time and effort required to initialize
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new activity recognition systems, to make the activity recognition systems more robust

and versatile, and to effectively reuse the existing knowledge that has previously been

generated.

With the recent explosion in the number of researchers and the amount of research

being done on transfer learning, activity recognition, and transfer learning for activity

recognition, it becomes increasingly important to critically analyze this body of work

and discover areas which still require further investigation. Although recent progress

in transfer learning has been analyzed in [78, 101, 112] and several surveys have been

conducted on activity recognition [2, 4, 14, 41] no one has specifically looked into the

intersection of these two areas. This chapter, therefore, examines the field of transfer-

based activity recognition and the unique challenges presented in this domain. For an

overview of the chapter, see Figure 2 which illustrates the topics covered in this chapter

and how they relate to each other.

2.2 Activity Recognition

Activity recognition aims to identify activities as they occur based on data collected

by sensors. There exist a number of approaches to activity recognition [47] that vary

depending on the underlying sensor technologies that are used to monitor activities, the

alternative machine learning algorithms that are used to model the activities and the

realism of the testing environment.

Advances in pervasive computing and sensor networks have resulted in the devel-

opment of a wide variety of sensor modalities that are useful for gathering information

about human activities. Wearable sensors such as accelerometers are commonly used
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Figure 2: Content map of the transfer learning for activity recognition domain.
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for recognizing ambulatory movements (e.g., walking, running, sitting, climbing, and

falling) [52, 63]. More recently, researchers are exploring smart phones equipped with

accelerometers and gyroscopes to recognize such movement and gesture patterns [54].

Environment sensors such as infrared motion detectors or magnetic door sensors have

been used to gather information about more complex activities such as cooking, sleeping,

and eating. These sensors are adept in performing location-based activity recognition in

indoor environments [1, 62, 108] just as GPS is used for outdoor environments [59]. Some

activities such as washing dishes, taking medicine, and using the phone are characterized

by interacting with unique objects. In response, researchers have explored the usage

of RFID tags and shimmer sensors for tagging these objects and using the data for

activity recognition [71, 81]. Researchers have also used data from video cameras and

microphones as well [1].

There have been many varied machine learning models that have been used for activ-

ity recognition. These can be broadly categorized into template matching / transductive

techniques, generative, and discriminative approaches. Template matching techniques

employ a kNN classifier based on Euclidean distance or dynamic time warping. Gen-

erative approaches such as näıve Bayes classifiers where activity samples are modeled

using Gaussian mixtures have yielded promising results for batch learning. Generative

probabilistic graphical models such as hidden Markov models and dynamic Bayesian

networks have been used to model activity sequences and to smooth recognition results

of an ensemble classifier [58]. Decision trees as well as bagging and boosting methods

have been tested [63]. Discriminative approaches, including support vector machines and

conditional random fields, have also been effective [15, 108] and unsupervised discovery

and recognition methods have also been introduced [39, 92].
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Along with a wide variety of machine-learning algorithms which have been applied

to activity recognition there are also several different feature representation that are

used. Some researchers have focused on pre-segmented activities [23, 59, 99, 115] while

others perform activity recognition on unsegmented activity streams [22, 47]. For pre-

segmented activities, features can be computed on the whole activity segment while for

activity streams features are usually computed based upon a sliding activity window.

In this work, we focus on two different feature representations both of which operate on

activity streams rather than pre-segmented activities. The first feature representation

is for event-based activity streams while the second feature representation is for contin-

uous activity streams. The event-based feature representation uses fixed-length window

based on the number of sensor events. The time of the sensor events as well as the fre-

quency of each sensor are computed as features. The continuous activity stream feature

representation uses a fixed-length window based upon the amount of time passed. The

average values of the sensors are computed as features.

2.2.1 Event-Based Features

For the event-based feature representation, we formulate the learning problem as that of

mapping a sequence consisting of the most recent sensor events within a sliding window

of length k to a label representing the activity to the last (most recent) event in the

sequence. The sensor events preceding the last event define the context for this last

event. Data collected in a smart home consists of events generated by the sensors.

These are stored as a 4-tuple: (Date, Time, Sensor Id, Message) as shown in Table 1.

To perform activity recognition, we extract features from data point i, where the
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Table 1: Sample of Sensor Events

Date Time Sensor Value
2011-06-15 03:41:50.30088 M021 OFF
2011-06-15 03:41:50.402649 MA020 OFF
2011-06-15 03:44:50.862962 M021 ON
2011-06-15 03:44:51.929508 M021 OFF
2011-06-15 04:41:28.179357 M021 ON
2011-06-15 04:41:29.333803 M021 OFF
2011-06-15 05:33:44.024833 M021 ON
2011-06-15 05:33:45.118382 M021 OFF
2011-06-15 06:33:30.363675 M021 ON
2011-06-15 06:33:31.437863 M021 OFF
2011-06-15 06:33:33.878588 M021 ON
2011-06-15 06:33:35.956492 M021 OFF
2011-06-15 08:45:45.685723 M021 ON
2011-06-15 08:45:46.789252 M021 OFF
2011-06-15 08:46:03.646237 M021 ON
2011-06-15 08:46:03.817155 MA020 ON
2011-06-15 08:46:08.513192 M021 OFF
2011-06-15 08:46:08.712314 MA020 OFF
2011-06-15 08:46:09.87972 MA020 ON
2011-06-15 08:46:12.103082 MA020 OFF
2011-06-15 08:46:21.859339 MA020 ON
2011-06-15 08:46:22.752142 M021 ON
2011-06-15 08:46:23.885996 M021 OFF
2011-06-15 08:46:25.199775 MA020 OFF
2011-06-15 08:46:26.713111 MA020 ON
2011-06-15 08:46:27.590115 M019 ON
2011-06-15 08:46:29.876241 MA020 OFF
2011-06-15 08:46:30.760636 M019 OFF
2011-06-15 08:46:32.587806 M018 ON
2011-06-15 08:46:36.329587 MA013 ON
2011-06-15 08:46:37.117772 M018 OFF
2011-06-15 08:46:45.86861 MA013 OFF
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Table 2: The feature vector describing a data point under the first feature representation.

Feature # Value
1 Time of day of the latest sensor event in the sliding window
2 Day of week of the latest sensor event in the sliding window

3 to n+ 3 Number of occurrences of each sensor in within the current window
(n sensors)

data point corresponds to a sensor event sequence of length k. The vector xi includes

values for the features summarized in Table 2. Each yi corresponds to the activity label

that is associated with the last sensor event in the sequence. A collection of data points

xi and the corresponding labels yi are fed as training data to a classifier to learn the

activity models in a discriminative manner. The classifier thus learns a mapping from

the sensor event sequence to the corresponding activity label.

2.2.2 Continuous Features

For the event-based feature representation, we formulate the learning problem as that of

mapping feature values within a sliding window of time-duration k to a label representing

the most prevalent activity during that time period. Data collected in a smart home

consists of events generated by the sensors. The event-based sensor data can be converted

to continuously sampled data by maintaining a current state for each sensor and sampling

the state values at the desired frequency.

To perform activity recognition, we extract features from data point i, where the data

point corresponds to a time period of length k. The vector xi includes the average value

of each sensor over the given time period (OFF=0 and ON=1). Each yi corresponds to

the most prevalent activity label during that time period. A collection of data points

xi and the corresponding labels yi are fed as training data to a classifier to learn the



13

activity models in a discriminative manner. The classifier thus learns a mapping from

sensor values over a given time-period to the corresponding activity label.

2.2.3 Classification Algorithms

Using either of the previously describe feature representations any number of different

supervised classification algorithms could be used to perform the activity recognition.

We will focus on two such classification algorithms, a Näıve Bayes classifier and a Deci-

sion Tree classifier.

A näıve Bayes classifier can learn a hypothesis by estimating P (y) and P (x|y)9; /”

based upon their observed frequencies and applying Bayes rule to estimate the posterior

probability P (y|xi). The class y with the highest posterior probability is selected as the

class label for q [68].

A decision tree classifier generates a tree where each interior node queries the value

of an attribute and each leaf represents a value of the target variable (in this case, the

activity label). Decision tree nodes are selected that maximize the reduction in entropy

of the training data set [86].

2.2.4 Summary

In summary, researchers have investigated many of the various challenges involved in

creating a personal activity recognition ecosystem, yet their efforts have remained largely

disjoint and limited to a single class of sensors [17, 84]. Each of these research groups

are making valuable contributions and a personal activity recognition ecosystem could

not exist without these basic building blocks. However, we need to start finding ways
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to successfully integrate these heterogeneous systems. The traditional approaches to

activity recognition make the strong assumption that the training and test data are

drawn from identical distributions. Many real-world applications cannot be represented

in this setting and thus the baseline activity recognition approaches have to be modified

to work in these realistic settings. Transfer based activity recognition is one conduit for

achieving this.

2.3 Transfer Learning

The ability to identify deep, subtle connections, what we term transfer learning, is the

hallmark of human intelligence. Byrnes [11] defines transfer learning as the ability to

extend what has been learned in one context to new contexts. Thorndike and Woodworth

[103] first coined this term as they explored how individuals transfer learned concepts

between contexts that share common features. Barnett and Ceci provide a taxonomy of

features that influence transfer learning in humans [5].

In the field of machine learning, transfer learning is studied under a variety of differ-

ent names including learning to learn, life-long learning, knowledge transfer, inductive

transfer, context-sensitive learning, and meta-learning [3, 34, 104, 105, 112]. It is also

closely related to several other areas of machine learning such as self-taught learning,

multi-task learning, domain adaptation, and co-variate shift. Because of this broad vari-

ance in the terms used to describe transfer learning it is helpful to provide a formal

definition of transfer learning terms and of transfer learning itself which will be used

throughout the rest of this work.
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2.3.1 Definitions

We start with a review of basic definitions needed for discussions of transfer learning

as it can be applied to activity recognition. Definitions for domain and task have been

provided by Pan and Yang [78]:

Definition 2.1 (Domain) A domain D is a two-tuple (χ, P (X)). χ is the feature space

of D and P (X) is the marginal distribution where X = {x1, ..., xn} ∈ χ.

Definition 2.2 (Task) A task T is a two-tuple (Y, f()) for some given domain D. Y is

the label space of D and f() is an objective predictive function for D. f() is sometimes

written as a conditional probability distribution P (y|x). f() is not given, but can be

learned from the training data.

To illustrate these definitions, consider the problem of activity recognition using

motion sensors. The domain is defined by a feature space which may represent the n-

dimensional space defined by n sensor firing counts within a given time window and a

marginal probability distribution over all possible firing counts. The task is composed

of a label space y which consists of the set of labels for activities of interest, and a

conditional probability distribution consisting of the probability of assigning a label

yi ∈ y given the observed instance x ∈ χ.

Using these terms, we can now define transfer learning. In this chapter, we specify

a definition of transfer learning that is similar to that presented by Pan and Yang [78]

but we allow for transfer learning which uses multiple source domains.

Definition 2.3 (Transfer Learning) Given a set of source domains DS = Ds1 , ..., Dsn

where n > 0, a target domain, Dt, a set of source tasks TS = Ts1 , ...Tsn where Tsi ∈ TS
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corresponds with Dsi ∈ DS, and a target task Tt which corresponds to Dt, transfer learn-

ing improves the learning of the target predictive function ft() in Dt where Dt 6∈ DS and

Tt 6∈ TS.

This definition of transfer learning is broad and encompasses a large number of

different transfer learning scenarios. The source domains can differ from the target

domain by having a different feature space, a different distribution of instances in the

feature space, or both. The source tasks can differ from the target task by having a

different label space, a different predictive function for labels in that label space, or both.

The source data can differ from the target data by having a different domain, a different

task, or both. However, all transfer learning problems rely on the basic assumption that

there exists some relationship between the source and target areas which allows for the

successful transfer of knowledge from the source to the target.

2.3.2 Scenarios

To further illustrate the variety of problems which fall under the scope of transfer-based

activity recognition, we provide illustrative scenarios. Not all of these scenarios can be

addressed by current transfer learning methods. The first scenario represents a typical

transfer learning problem solvable using recently developed techniques. The second

scenario represents a more challenging situation that pushes the boundaries of current

transfer learning techniques. The third scenario requires a transfer of knowledge across

such a large difference between source and target datasets, that current techniques only

scratch the surface of what is required to make such a knowledge transfer successful.
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Scenario 1

In one home which has been equipped with multiple motion and temperature sensors,

an activity recognition algorithm has been trained using months of annotated labels to

provide the ground truth for activities which occur in that home. A transfer learning

algorithm should be able to reuse the labeled data to perform activity recognition in a

new setting. Such transfer will save months of man-hours annotating data for the new

home. However, the new home has a different layout as well as a different resident and

different sensor locations than the first home.

Scenario 2

An individual with Parkinson’s disease visits his neurosurgeon twice a year to get an

updated assessment of his gait, tremor, and cognitive health. The medical staff perform

some gait measurements and simulated activities in their office space to determine the

effectiveness of the prescribed medication, but want to determine if the observed im-

provement is reflected in the activities the patient performs in his own home. A learning

algorithm will need to be able to transfer information between different physical settings,

as well as time of day, sensors used, and scope of the activities.

Scenario 3

A researcher is interested in studying the cooking activity patterns of college students

living in university dorms in the United States. The research study has to be conducted

using the smart phone of the student as the sensing mechanism. The cooking activity

of these students typically consists of heating up a frozen snack from the refrigerator

in the microwave oven. In order to build the machine learning models for recognizing
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these activity patterns, the researcher has access to cooking activities for a group of

grandmothers living in India. This dataset was collected using smart home environmen-

tal sensors embedded in the kitchen and the cooking activity itself was very elaborate.

Thus the learning algorithm is now faced with changes in the data at many layers;

namely, differences in the sensing mechanisms, cultural changes, age related differences,

different location settings and finally differences in the activity labels. This transfer

learning from one setting to another diverse setting is most challenging and requires

significant progress in transfer learning domain to even attempt to solve the problem.

These scenarios illustrate different types of transfer that should be possible using

machine learning methods for activity recognition. As is described by these situations,

transfer may occur across several dimensions. We next take a closer look at these types of

transfer and use these descriptors to characterize existing approaches to transfer learning

for activity recognition.

2.4 Dimensions of Analysis

Transfer learning can take many forms in the context of activity recognition. In this

discussion we consider four dimensions to characterize various approaches to transfer

learning for activity recognition. First, we consider different sensor modalities on which

transfer learning has been applied. Second, we consider differences between the source

and target environments in which data is captured. The third dimension is the amount

and type of data labeling that is available in source and target domains. Finally, we

examine the representation of the knowledge that is transferred from source to target.
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2.4.1 Modality

One natural method for the classification of transfer learning techniques is the underlying

sensing modalities used for activity recognition. Some techniques may be generalizable to

different sensor modalities, but most techniques are too specific to be generally applicable

to any sensor modality other than that for which they are designed to work with. This

is usually because the types of differences that occur between source and target domains

are different for each sensor modality. These differences and their effect on the transfer

learning technique are discussed in detail in Section 2.4.2. In this section we consider

only those techniques which have empirically demonstrated their ability to operate on a

given sensor modality.

The classification of sensor modalities itself is a difficult problem and indeed creating

precise classification topology is outside of the scope of this work. However, we roughly

categorize sensor modalities into the following classifications, video cameras, wearable

devices, and ambient sensors. For each sensor modality, we provide a brief description of

the types of sensors which are included and a summary of the research works performing

transfer learning in that domain. In this section, we do not describe the transfer learning

algorithms used in the papers as that will be discussed in the other dimensions of analysis.

Video Sequences

Video cameras are one of the first sensor modalities in which transfer learning has been

applied to the area of activity recognition [121]. Video cameras provide a dense feature-

space for activity recognition which potentially allows for extremely fine-grained recog-

nition of activities. Spatio-temporal features are extracted from video sequences for
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characterizing the activities occurring in them. Activity models are then learned using

these feature representations.

One drawback of video processing for activity recognition is that the use of video

cameras raises more issues associated with user privacy. In addition, cameras need to

be well positioned and track individuals in order to capture salient data for processing.

Activity recognition via video cameras has received broad attention in transfer learning

research [33, 35, 56, 60, 69, 117, 119, 120, 121, 124].

Wearable sensors

Body Sensor Networks are another commonly used sensing mechanism to capture ac-

tivity related information from individuals. These sensors are typically worn by the

individuals. Strategic placement of the sensors helps in capturing important activity

related information such as movements of the upper and lower parts of the body that

can then be used to learn activity models. Sensors in this category include, inertial

sensors such as accelerometers and gyroscopes, sensors embedded in smart phones, ra-

dio frequency identification sensors and tags. Researchers have applied transfer learning

techniques to both activity recognition using wearable accelerometers and activity recog-

nition using smartphones but we have not seen any transfer learning approaches applied

to activity recognition using RFID tags. This may be due in part to the relatively low

use of RFID tags in activity recognition itself.

Within wearable sensors, two types of problems are generally considered. The first

is the problem of activity recognition itself [6, 12, 19, 40, 51, 53, 95, 111, 126, 127],

and the second is the problem of user localization, which can then be used to increase

the accuracy of the activity recognition algorithm [73, 76, 77, 79, 129] . Both problems
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present interesting challenges for transfer learning.

Ambient Sensors

Ambient sensors represent the broadest classification of sensor modalities which we define

in this chapter. We categorize any sensor that is neither wearable nor video camera into

ambient sensors. These sensors are typically embedded in an individual’s environment.

This category includes a wide variety of sensors such as motion detectors, door sensors,

object sensors, pressure sensors, and temperature sensors. As the name indicates, these

sensors collect a variety of activity related information such as human movements in the

environment induced by activities, interactions with objects during the performance of

an activity, and changes to illumination, pressure and temperature in the environment

due to activities. Researchers have only recently begun to look at transfer learning

applications for ambient sensors with the earliest work appearing around 2008 [107].

Since then the field of transfer learning for activity recognition using ambient sensors

has progressed rapidly with many different research groups analyzing the problem from

several different angles [20, 44, 88, 89, 90, 91, 95, 109, 128].

Crossing the sensor boundaries

Clearly, transfer learning within individual sensor modalities is progressing. Researchers

are actively developing and applying new techniques to solve a variety of problems within

any given sensor modality domain. However, there has been little work done that tries

to transfer knowledge between any two or more sensor modalities. Kurz et al. [53] and

Roggen et al. [95] address this problem using a teacher/learner model which is discussed

further in Section 2.4.3. Hu et al. [44] introduce a transfer learning technique for
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successfully transferring some knowledge across sensor modalities, but greater transfer

of knowledge between modalities has yet to be explored.

2.4.2 Physical Setting Differences

Another useful categorization of transfer learning techniques is the types of physical

differences between a source and target dataset across which the transfer learning tech-

niques can achieve a successful transfer of knowledge. In this section, we describe these

differences in a formal setting and provide illustrative examples drawn from activity

recognition.

We use the terminology for domain, task and transfer learning defined in Section 2.3.1

to describe the differences between source and target datasets. These differences can be

in the form of the feature-space representation, the marginal probability distribution of

the instances, the label space, and/or the objective predictive function. When describing

transfer learning in general, using such broad terms allows one to encompass many

different problems. However, when describing transfer learning for a specific application,

such as activity recognition, it is convenient to use more application specific terms. For

example, differences in the feature-space representation can be thought of in terms of

the sensor modalities and sampling rates and differences in the marginal probability

distribution can be thought of in terms of different people performing the same activity,

or having the activity performed in different physical spaces.

Even when limiting the scope to activity recognition, it is still infeasible to enumer-

ate every possible difference between source and target datasets. In this chapter, we

consider some of the most common or important differences between the source and
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Table 3: Relationship between formally defined transfer learning differences and the
applied meaning for activity recognition.

Formal Definition Applied Meaning
χt 6= χsi for 0 < i < n sensor networks, sensor modality, or phys-

ical space
P (Xt) 6= P (Xsi) for 0 < i < n time, people, devices, or sampling rates
Yt 6= Ysi for 0 < i < n activities or labels
ft(x) 6= fsi(x) for 0 < i < n time, people, devices, sampling rates, ac-

tivities, or labels

target datasets including time, people, devices, space, sensor types, and labels. Table

3 summarizes the relationship between each of these applied differences and the formal

definitions of transfer learning differences.

Differences across time, people, devices, or sensor sampling rates result in differences

in the underlying marginal probability distribution, the objective predictive function, or

both. Several papers focus specifically on transferring across time differences [51, 73,

76, 111], differences between people [16, 40, 88, 127], and differences between devices

[126, 129].

Differences created when comparing datasets from different spaces or spatial layouts

are reflected by differences in the feature-spaces, the marginal probability distributions,

the objective predictive functions, or any combination of these. As the number of dif-

ferences increases, the source and target datasets become less related making transfer

learning more difficult. Because of this, current research usually imposes limiting as-

sumptions about what is different between the spaces. Several researchers, for example,

assume that some meta-features are added which provide space-independent informa-

tion [20, 89, 90, 91, 107, 109]. For WiFi localization, Pan et al. [77] assume that the

source and target spaces are in the same building. Applying transfer learning to video
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clips from different spaces usually results in handling issues of background differences

[13, 120, 121] and/or issues of camera view angle [60].

Differences in the labels used in the datasets are obviously reflected by differences in

the label space and the objective predictive function. Compared to the other differences

discussed previously, transferring between differences in the label space has received

much less attention in the current literature [44, 56, 117, 124, 128].

One of the largest differences between datasets occurs when the source and target

datasets have a different sensor modality. This makes the transfer learning problem

much more difficult and relatively little work has been done in this direction. Hu and

Yang have started work in this direction in [44]. Additionally, Calatroni et al. [12],

Kurz et al. [53] and Roggen et al. [95] take a different approach to transferring across

sensor modality by assuming a classifier for the source modalities can act as an expert

for training a classifier in the target sensor modality.

2.4.3 Data Labeling

In this section we consider the problem of transfer learning from the perspective of

the availability of labeled data. Traditional machine learning uses the terms super-

vised learning and unsupervised learning to distinguish learning techniques based on the

availability and use of labeled data. To distinguish between source and target labeled

data availability we introduce two new terms, informed and uninformed, which we ap-

ply to the availability of labeled data in the target area. Thus, informed supervised

(IS) transfer learning implies that some labeled data is available in both the target

and source domains. Uninformed supervised (US) transfer learning implies that labeled
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data is available only in the source domain. Informed unsupervised (IU) transfer learn-

ing implies that labeled data is only available in the target domain. Finally, uninformed

unsupervised (UU) transfer learning implies that no labeled data is available for either

the source or target domains. One final case to consider is teacher/learner (TL) transfer

learning, where no training data is directly available. Instead a previously-trained clas-

sifier (the Teacher) is introduced which operates simultaneously with the new classifier

to be trained (the Learner) and provides the labels for observed data instances.

Two other terms that are often used in machine learning literature and may be appli-

cable here are inductive and transductive learning. Inductive learning refers to learning

techniques which try to learn the objective predictive function. Transductive learning

techniques, on the other hand, try to learn the relationship between instances. Pan

and Yang [78] extend the definitions of inductive and transductive learning to transfer

learning, but the definitions do not create a complete taxonomy for transfer learning

techniques. For this reason, we do not specifically classify recent works as being in-

ductive or transductive in nature, but we note here how the inductive and transductive

definitions fit into a classification based upon the availability of labeled data.

Inductive learning requires that labeled data be available in the target domain re-

gardless of its availability in the source domain. Thus, most informed supervised and

informed unsupervised transfer learning techniques are also inductive transfer learning

techniques. Transductive learning, however, does not require labeled data in the tar-

get domain. Therefore, most uninformed supervised techniques are also transductive

transfer learning techniques. Table 4 summarizes this general relationship.

Several researchers have developed and applied informed, supervised transfer learn-

ing techniques for activity recognition. These techniques have been applied to activity
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Table 4: General relationship between inductive/transductive learning and the availabil-
ity of labeled data.

Label Availability Most Common Approach
Informed Supervised Inductive Learning
Informed Unsupervised Inductive Learning
Uninformed Supervised Transductive Learning
Uninformed Unsupervised Unsupervised Learning

recognition using wearables [6, 50, 72, 76, 111, 129] and to activity recognition using

cameras [33, 56, 69, 120, 121, 124].

Research into transfer-based activity recognition using ambient sensors has almost

exclusively focused on uninformed supervised transfer learning [20, 44, 45, 88, 107, 109,

111, 128], but a few algorithms are able to take advantage of the labeled target data

if it is available [89, 90, 91]. This focus on uninformed supervised transfer learning is

most likely due to the allurement of building an activity recognition framework that can

be trained offline and later installed into any user’s space without requiring additional

data labeling effort. Wearables have also been used for uninformed supervised transfer

learning research [40, 73, 77, 79, 122, 126, 127] as have cameras[13, 35, 60, 117, 119].

Despite the abundance of research using labeled source data, research into transfer

learning techniques for activity recognition in which no source labels are available is

extremely sparse. Pan et al. [73] have applied an uninformed unsupervised technique,

transfer component analysis (TCA) to reduce the distance between domains by learning

some transfer components across domains in a reproducing kernel Hilbert space using

maximum mean discrepancy. We are unaware of any other work for uninformed un-

supervised transfer-based activity recognition. We are also unaware of any work on

informed unsupervised transfer-based activity recognition. The lack of research into
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informed unsupervised transfer-based activity recognition is not surprising because the

idea of having labeled target data available and not having labeled source data is counter-

intuitive to the general principle of transfer learning. However, informed unsupervised

transfer learning may still provide significant benefits to activity recognition.

The teacher/learner model for activity recognition is considerably less studied than

the previously discussed techniques. However, we feel that this area has significant

promise for improving transfer learning for activity recognition and making activity

recognition systems much more robust and versatile. Roggen et al. [95], Kurz et al.

[53], and Calatroni et al. [12] apply the teacher/learner model to develop an oppor-

tunistic system which is capable of using whatever sensors are currently contained in

the environment to perform activity recognition.

In order for the teacher/learner model to be applicable, two requirements must be

met. First, an existing classifier (the teacher) must already be trained in the source

domain. Second, the teacher must operate simultaneously with a new classifier in the

target domain (the learner) to provide the training for the learner. For example, Roggen

et al. [95] equip a cabinet of drawers with an accelerometer for each drawer and then a

classifier is trained to recognize which drawer of the cabinet is being opened or closed.

This classifier becomes the teacher. Then several wearable accelerometers are attached

to the person opening and closing the drawers. Now, a new classifier is trained using

the wearable accelerometers. This classifier is the learner. When the individual opens

or closes a drawer, the teacher labels the activity according to its classification model.

This label is given to the learner which can then be used as labeled training data in

real-time without the need to supply any manually labeled data.
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The teacher/learner model presents a new perspective on transfer learning and intro-

duces additional challenges. One major challenge of the teacher/learner model is that

the accuracy of the learner is limited by the accuracy of the teacher. Additionally, the

system’s only source of a ground truth comes from the teacher and thus the learner

is completely reliant upon the teacher. It remains to be explored whether the learner

can ever outperform the teacher and if it does so, whether it can convince itself and

others of this superior performance. Finally, while the teacher/learner model provides a

convenient way to transfer across different domains, an additional transfer mechanism

would need to be employed to transfer across different label spaces.

2.4.4 Type of Knowledge Transferred

Pan and Yang [78] describe four general classifications for transfer learning in relation to

what is transferred, instance transfer, feature-representation transfer, parameter trans-

fer, and relational-knowledge transfer.

Instance Transfer

Instance transfer reuses the source data to train the target classifier, usually by re-

weighting the source instances based upon a given metric. Instance transfer techniques

work well when χs = χt i.e., the feature space describing the source and target domains

are the same. They may also be applied after the feature representation has first been

transferred to a common representation between the source and target domains.

Several researchers have applied instance transfer techniques to activity recognition.

Hachiya et al. [40] develop an importance weighted least-squares probabilistic classifi-

cation approach to handle transfer learning when P (Xs) 6= P (Xt) (i.e., the co-variate



29

shift problem) and apply this approach to wearable accelerometers. Venkatesan et al.

[50, 110, 111] extend the AdaBoost framework proposed by Freund and Schapire [36]

to include cost-sensitive boosting which tries to weight samples from the source domain

according to their relevance in the target domain. In their approach, samples from the

source domain are first given a relevance cost. As the classifier is trained, those in-

stances from the source domain with a high relevance must also be classified correctly.

Xian-ming and Shao-zi apply TrAdaBoost (a different transfer learning extension of Ad-

aBoost) [26] to action recognition in video clips [120] . Lam et al. weight the source

and target data differently when training an SVM to recognize target actions from video

clips [56]. Training a typical SVM involves solving the following optimization problem:

min
~w,ξ
{1

2
||~w||2 + C

n∑
i=1

ξi}

s.t. yi(~xi · ~w + b)− 1 + ξi ≥ 0, ξi ≥ 0

(2.1)

where ~xi is the ith datapoint and yi, ξi are the label and slack variable associated with ~xi.

~w is the normal to the hyperplane. C is the parameter that trades off between training

accuracy and margin size. However, to allow for the different source and target weights,

they solve the following optimization:

min
~w,ξ
{1

2
||~w||2 + Cs

n∑
i=1

ξi + Ct

n+m∑
i=n+1

ξi}

s.t. yi(~xi · ~w + b)− 1 + ξi ≥ 0, ξi ≥ 0

(2.2)

where the parameters are the same as before except the first n datapoints are from the

source data and the last m datapoints are from the target data.
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Unlike the previous instance-based approaches which weight the source instances

based on similarity of features between the source and target data, Zheng et al. [128]

use an instance-based approach to weight source instances based upon the similarity

between the label information of the source and target data. This allows them to transfer

the labels from instances in the source domain to instances in the target domain using

web-knowledge to relate the two domains [44, 45]. Taking a different approach, several

researchers [12, 53, 95] use the real-time teacher/learner model discussed in the previous

section to transfer the label of the current instance in the source domain to the instance

in the target domain.

Feature-Representation Transfer

Feature-representation transfer reduces the differences between the source and target

feature spaces. This can be accomplished by mapping the source feature space to the

target feature space such as f : χs → χt, by mapping the target feature space to the

source feature space such as g : χt → χs, or by mapping both the source and target

feature spaces to a common feature space such as g : χt → χ and f : χs → χ. This

mapping can be computed manually [107] or learned as part of the transfer learning

algorithm[33, 44, 60, 88, 129].

When the mapping is part of the transfer learning algorithm a common approach is to

apply a dimensionality reduction technique to map both source and target feature-space

into a common latent space [72, 73, 76, 79]. For example, Chattopadhyay et al. [16] use

Isomap [102] to map both the source and target data into a common low-dimensional

space after which instance-based transfer techniques can be applied.

In some cases, meta-features are first manually introduced into the feature space and



31

then the feature space is automatically mapped from the source domain to the target

domain [6, 20, 109]. An example of this is the work of Rashidi and Cook [91]. They

first assign a location label to each sensor indicating in which room or functional area

the sensor is located. Then activity templates are constructed from the data for both

the source and target data, finally a mapping is learned between the source and target

datasets based upon the similarity of activities and sensors [89, 90].

Parameter Transfer

Parameter transfer learns parameters which are shared between the source and target

tasks. One common use of parameter transfer is learning a prior distribution shared

between the source and target datasets. For example, one technique [13] models the

source and target tasks using a Gaussian Mixture Model which share a prior distribution,

another algorithm [33] learns a target classifier using a set of pre-trained classifiers as

prior for the target classifier, and van Kasteren et al. [107] propose a method to learn

the parameters of a Hidden Markov Model using labeled data from the source domain,

and unlabeled data from the target domain. Later they extend this work to learn

hyperparameter priors for the HMM instead of learning the parameters directly [109].

Another common example of parameter transfer assumes the SVM parameter w can

be split into two terms: w0, which is the same for both the source and target tasks, and

v, which is specific to the particular task. Thus ws = w0 + vs and wt = w0 + vt. Several

works adopt this approach [69, 121].

Using a different approach to parameter transfer, a transfer learning algorithm [77,

79] can extract knowledge from the source domain to impose additional constraints

on a quadratically-constrained quadratic program optimization problem for the target
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domain. Along a similar line of thought, Zhao et al. [126, 127] use information extracted

from the source domain to initialize cluster centers for a k-means algorithm in the target

domain.

Relational-Knowledge Transfer

Relational-knowledge transfer applies to problems in which the data is not independent

and identically distributed (i.i.d.) as is traditionally assumed but can be represented

through multiple relationships [78]. Such problems are usually represented with a net-

work or graph. Relational-knowledge transfer tries to transfer the relationships of in

the source domain to the target domain. This type of transfer learning is not heavily

explored, and as far as we are able to determine, no research is currently being pursued

in transfer learning for activity recognition using relational-knowledge transfer.

2.5 Heterogeneous Transfer Learning

Up until this point we have focused on literature specifically addressing transfer learning

for activity recognition applications. However, we can also look at additional transfer

learning techniques which have not yet been applied to the activity recognition domain.

We limit this to transfer learning approaches which can be applied to solve the new

environment problem or the new sensing platform problem.

Domain adaptation is a specific branch of transfer learning that targets the case

when the source and target data are not from the same domain. However, most of those

works assume the difference is in the marginal probability distribution of the domains.

Daumé and Marcu model the probability distribution using a mixture model [29].
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They assume that the source data comes from a mixture of a source probability distri-

bution and a general probability distribution and that the target data similarly comes

from a mixture of a target probability distribution and a general probability distribu-

tion. They then learn the parameters of these distributions from the data and use the

source data to bolster the estimation of the the target data.

Several researchers apply feature-space transformations to overcome differences in

the marginal probability distributions. Blitzer et al. [7, 8] propose Structural Corre-

spondence Learning (SCL) to use the correlation between certain pivot features (which

have the same semantic meaning in both domains) and other features to create a com-

mon feature representation. Pan et al. [75] construct a bipartite graph with connections

between pivot features and non-pivot features that contain co-occurring feature values.

They then apply spectral clustering to align the features and create a common feature-

space representation.

Daumé et al. transform the source and target feature spaces into a higher dimensional

representation with source, target and common components [30]. They then extend this

to use unlabeled data by introducing co-regularization to force the source and target

components to predict the same label on the unlabeled data [28]. Zhong et al. use kernel

mapping to map features in the source and target domains to a new feature space where

the conditional and marginal probabilities are more closely aligned [131]. They prove

that a classifier trained in the new feature space has a bounded error.

Using a different approach, Pan et al. [73] perform domain adaptation via dimen-

sionality reduction. Using Transfer Component Analysis [74], they reduce the distance

between domains by projecting the features onto a shared subspace. As in the previous

approaches, the technique focuses on the differences in the distribution of the data and
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assumes the feature space is the same.

Chattopadhyay et al. use domain adaptation on multiple source domains to detect

fatigue using SEMG signal data [16]. Their algorithm combines the output from multiple

source classifiers to predict a label for unlabeled data in the target domain. These data

instances are then combined with labeled data in the target domain and a final classifier

is built. The label predictions from the multiple source domains are combined using a

weighted voting schemed where the weights are based upon the similarity between the

source and target domain at a per-class level.

We focus on transfer learning problems where the source and target domains are

different because they have different feature spaces. This is commonly referred to as

heterogeneous transfer learning in the literature and is formally defined below.

Definition 2.4 (Heterogeneous Transfer Learning) Given a set of source domains

DS = Ds1 , ..., Dsn where n > 0, a target domain, Dt, a set of source tasks TS =

Ts1 , ...Tsn where Tsi ∈ TS corresponds with Dsi ∈ DS, and a target task Tt which cor-

responds to Dt, transfer learning improves the learning of the target predictive function

ft() in Dt where χt ∩ (χs1 ∪ ...χsn) = ∅.

Dai et al. attempt solving the heterogeneous transfer learning problem by extending

the risk minimization framework [55] and developing a translator between feature spaces

based upon co-occurrence data (feature-feature, feature-instance, instance-feature, or

instance-instance) between the source and target datasets [24]. Prettenhofer extends

SCL to the heterogeneous transfer learning case by use a translation oracle (i.e. a

domain expert or bi-lingual dictionary) to enumerate several pivot features. These pivot

features are then correlated to the other features in both domains and a cross-lingual
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classifier is trained [85].

Shi and Yu apply dimensionality reduction to heterogeneous feature spaces. In order

to project the features from different feature spaces onto a single unified subspace they

require that the data instances be linked as in multi-view learning. The ith data instance

in the jth feature space is also the ith data instance in the kth feature space. Yang et al.

extend the probabilistic latent semantic analysis (PLSA) [43] to improve image clustering

results [123]. Images features are clustered to latent variables while annotations from

social media are simultaneously clustered to the same latent variables. By clustering

both the annotations and the image features the overall clustering results are improved.

Manual mapping strategies have also been used to overcome differences in the fea-

ture spaces. For example, Van Kasteren et al. [107, 109] group sensors by their loca-

tion/function. Sensors in the source domain are then mapped to similar sensors in the

target domain. Rashidi and Cook also map sensors based on location/function but ap-

ply additional transfer learning techniques to better align the source and target datasets

[90, 91]. Our approach eliminates the need to manually map the feature spaces as this

is handled by the algorithm. Additional domain adaptation approaches can then be

applied to further improve the knowledge transfer. USFSR requires the manual specifi-

cation of meta-features but this specification only occurs once and can be applied to map

multiple source and target domains. The techniques of both Rashidi and Van Kasteren

require a mapping to be defined for each source and target pair. Additionally, the man-

ual mapping strategies are domain dependent, while FSR is applicable to a variety of

different problems.

Many different techniques for heterogeneous transfer learning can be adapted from co-

training or multi-view learning where instance-instance co-occurrence data is explicitly
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available. Multi-view learning algorithms have been successfully applied to a variety

of domains including natural language processing [83, 82], image recognition [18], wifi-

localization [76], facial recognition [130] and robotic object recognition [48]. The co-

training algorithm has been around for over a decade but continues to be a popular

approach [9, 37, 49, 61, 93, 113]. However, no one has implemented these techniques for

activity recognition using different sensor modalities as the multiple views [21].

2.6 Summary

The previous sections analyzed a large body of transfer-based activity recognition re-

search along four different dimensions. Looking at each dimension separately provides

an orderly way to analyze so many different papers. However, such separation may also

make it difficult to see the bigger picture. Table 5, therefore, summarizes the classifica-

tion of existing works along these four dimensions.

Table 5: Summarization of existing work based on the four dimension of analysis.

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[6] wearables new activities

and labels

IS feature-

representation

[12] wearables different device,

placement

TL instance-based
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Table 5: (continued from the previous page.)

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[13] video camera background,

lighting, noise,

and people

IS, US parameter-based

[16] wearables people IS feature-

representation

and instance-

based

[19] wearables people IS parameter-based

[20] ambient sensors location, layout,

people

US feature-

representation

[33] video camera web-domain

vs consumer

domain.

IS feature-

representation

and parameter-

based

[35] video camera view angle US feature-space

[40] wearables people US instance-based

[44] ambient sensors,

wearables

label space, loca-

tion

US instance-based

and feature-

representation
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Table 5: (continued from the previous page.)

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[45] ambient sensors,

wearables

label space US instance-based

[50] wearables people and set-

ting

IS instance-based

[53] wearables sensors TL instance-based

[56] video camera labels IS instance-based

[60] video camera view angle US feature-

representation

[69] video camera activity sets, la-

bels

IS parameter-based

[72] wearables time IS feature-

representation

[73] wearables time US, UU feature-

representation

[76] wearables time IS feature-

representation

[77] wearables space, location US parameter-based
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Table 5: (continued from the previous page.)

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[79] wearables space, time, de-

vice

IS, US feature-

representation

and parameter-

based

[88] ambient sensors people US feature-

representation

[89] ambient sensors layout, sensor

network

IS, US feature-

representation

[90] ambient sensors layout, sensor

network

IS, US feature-

representation

[91] ambient sensors layout, sensor

network, people

IS, US feature-

representation

[95] ambient sensors,

wearables

devices TL instance-based

[107] ambient sensors location US feature-

representation

and parameter-

based



40

Table 5: (continued from the previous page.)

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[109] ambient sensors location US feature-

representation

and parameter-

based

[110] wearables people, setting IS instance-based

[111] wearables people, setting IS instance-based

[117] video camera labels US feature-

representation

[119] video camera view angle US parameter

[120] video camera background,

people

IS instance

[121] video camera background,

video domain

IS parameter-based

[122] wearables space, time, de-

vice

IS, US feature-

representation

and parameter-

based

[124] video camera activities per-

formed

IS distance function
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Table 5: (continued from the previous page.)

Paper Sensor Modal-

ity

Difference Labeling Type of Knowl-

edge Transfer

[126] wearables mobile device,

sampling rate

US parameter-based

[127] wearables people US parameter-based

[128] ambient sensors,

wearables

activity labels US instance-based

[129] wearables devices IS feature-

representation

2.7 Grand Challenges

Although transfer-based activity recognition has progressed significantly in the last few

years, there are still many open challenges. In this section, we first consider challenges

specific to a particular sensor modality and then we look at challenges which are gener-

alizable to all transfer-based activity recognition.

As can be seen in Table 7, performing transfer-based activity recognition when the

source data is not labeled has not received much attention in current research. Outside

the domain of activity recognition, researchers have leveraged the unlabeled source data

to improve transfer in the target domain [27, 87, 116] but such techniques have yet to

be applied to activity recognition.

Another area needing more attention is relational-knowledge transfer for activity

recognition as indicated in Table 8. Relational-knowledge transfer requires that there
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Table 6: Existing work categorized by sensor modality and the differences between the
source and target datasets.

Sensor
Modality

χs 6= χt P(Xs) 6=P(Xt) Ys 6= Yt fs(x) 6= ft(x)

Video [33, 35, 60,
117, 119]

[13, 33, 120,
121, 119]

[56, 69,
124]

[13, 33, 56,
60, 69, 120,
121, 124]

Wearable [12, 53, 79,
95, 122, 126,
129]

[19, 40, 50, 72,
73, 76, 77, 79,
110, 111, 122]

[6, 44, 45,
128]

[6, 40, 44, 45,
50, 72, 73, 76,
77, 79, 111,
122, 128]

Ambient [20, 89, 90,
91, 95, 107,
109]

[20, 88, 89, 90,
91, 107, 109]

[44, 45,
128]

[20, 44, 45,
88, 89, 90, 91,
107, 109, 128]

Table 7: Existing work categorized by sensor modality and data labeling.

Sensor Informed Uninformed Informed Uninformed
Modality Supervised Supervised Unsupervised Unsupervised
Video [13, 33, 56, 69,

120, 121, 124]
[13, 35, 60,
117, 119]

- -

Wearable [6, 19, 72, 76,
79, 110, 111,
122, 129]

[40, 44, 45, 50,
73, 77, 79, 122,
126, 127, 128]

- [73]

Ambient [89, 90, 91] [20, 44, 45, 88,
89, 90, 91, 107,
109, 128]

- -

Table 8: Existing work categorized by sensor modality and the type of knowledge trans-
ferred.

Sensor Instance Feature Parameter Relational
Modality Based Representation Based Knowledge
Video [56, 120] [33, 35, 60, 117] [13, 33, 69,

119, 121, 124]
-

Wearable [12, 40, 44, 45,
50, 53, 95, 110,
111, 128]

[6, 72, 73, 76, 79,
122, 129]

[19, 77, 79,
122, 126, 127]

-

Ambient [44, 45, 95,
128]

[20, 44, 88, 89, 90,
91, 107, 109]

[107, 109] -
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exist certain relationships in the data which can be learned and transferred across

populations. Data for activity recognition has the potential to contain such transfer-

able relationships indicating that this may be an important technique to pursue. See

[31, 64, 65, 66] for examples of relational-knowledge transfer.

Tables 6-8 also indicate several more niche areas which could be further investigated.

For example, in the video camera domain, most of the work has focused on informed

supervised parameter-based transfer learning, while the other techniques have not been

heavily applied. Similarly, transferring across different labels spaces is a much less

studied problem in transfer-based activity recognition. Finally, we note that parameter-

based transfer learning is also less studied for the ambient sensor modality.

The current direction of most transfer-based activity recognition research is to push

the limits on how different the source and target domains and tasks can be. The scenar-

ios discussed in Section 2.3.2 illustrate the importance of continuing in this direction.

More work is needed to improve transfer across sensor modalities and to transfer knowl-

edge across multiple differences. To fill this need, we develop techniques for transferring

knowledge between heterogeneous feature-spaces. This, in turn, provides solutions to

the new environment and new sensing platform problems, enabling the creation of per-

sonalized activity recognition ecosystems.
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Chapter 3

New Environment Problem

3.1 Introduction

Traditional supervised machine learning techniques rely on the assumptions that the

training data and test data have similar probability distributions and that the classifi-

cation task is the same for both datasets. Ideally we would like to be able to use labeled

data from a different domain to improve learning in the target domain. One example

would be to use labeled data from one or more smart apartments to recognize activities

in a new smart apartment which may have a different layout, different residents, or dif-

ferent lifestyles or behavioral patterns. Another example would be using the labeled data

from a smart apartment to perform activity recognition in a smart office. The previous

examples would not only exhibit different probability distributions between the source

and target domains, but also likely have entirely different feature spaces. In these cases,

traditional machine learning techniques often fail to correctly classify the test data.

With heterogeneous learning, transfer between vastly different domains becomes fea-

sible. The majority of heterogeneous transfer learning techniques map the source feature

space to the target feature space or to map both the source and target feature space to a

shared feature space. However, we show that by reversing this model and mapping the

target feature space to the source feature space one can leverage an existing hypothesis in

the source feature space to find a better mapping between feature spaces. Additionally,
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by mapping the target feature space to the source feature space one can easily create

ensemble learners which further improve the accuracy of the proposed techniques.

We propose a class of novel heterogeneous transfer learning techniques, Feature-Space

Remapping (FSR), which is capable of handling different feature spaces without the use

of a translation oracle or instance-instance co-occurrence data. We term the technique

a “remapping” because the original raw data is already mapped onto a feature space

and FSR remaps the data to a different feature space. The technique can be used in

either the informed or uninformed transfer learning setting and we provide details for

both cases. FSR uses only a small amount of labeled data in the target domain to infer

relations to the source domain and can optionally operate without any labeled data in

the target domain or other linkage data. For simplicity, we present FSR here assuming

the feature-space is a vector of real-valued numbers. However, it is straightforward to

extend the FSR approach to handle categorical or discrete values as well.

In addition to presenting FSR for transferring knowledge from a single source domain

to a target domain, we also show how FSR can effectively combine the information

from multiple source domains by using an ensemble learner to increase the classification

accuracy in the target domain.

3.2 Background

Although FSR focuses on different feature spaces, it does not rely on the other dimensions

of the transfer learning problem remaining constant. Indeed the datasets we use in the

experimental section have differences in the marginal probability distributions as well

as in the label space. As with all transfer learning problems we do rely on the basic
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assumption that there exists some relationship between the source and target areas

which allows for the successful transfer of knowledge from the source to the target.

When the feature spaces of the domains are different, we assume that they can be

different both in terms of the number of dimensions and in the organization of the

dimensions. To illustrate this point, consider two different domains, one consisting of

two dimensional data and the other consisting of three dimensional data. It could be

the case that the first two dimensions are the same in both domains (see Figure 3a);

however, it could also be the case that the first two dimensions of the target domain

correspond with the last two dimensions of the source domain (see Figure 3b), or perhaps

only the first dimension of the target domain corresponds with the last dimension of the

source domain. It may even be the case that the dimensions are entirely different, but

a mapping between dimensions could still allow the knowledge gained in one domain

to be used effectively in the other domain (see Figure 3c). FSR learns a mapping from

the target feature space to the source feature space regardless of the exact differences

between dimensions.

3.2.1 Illustrative Example

Before describing our new FSR algorithms named GAFSR, GrFSR, and SFSR, we

put forward an example transfer learning scenario to illustrate the concepts introduced

throughout the discussion. To that end, let us consider the transfer learning problem

for activity recognition in a smart environment using ambient sensors.

Ambient sensors are typically embedded in an individual’s environment. Examples

of ambient sensors may include motion detectors, door sensors, object vibration sensors,
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(a) Map 1 (b) Map 2 (c) Map 3

Figure 3: Example mappings from target T (two-dimensional data) to source S (three-
dimensional data). Some features may be equivalent in both feature-spaces as in Map 1
and Map 2 or the features may just be similar as in Map 3.

pressure sensors, and temperature sensors. As the name indicates, these sensors are

designed to disappear into the environment while collecting a variety of activity related

information such as human movements in the environment induced by activities, inter-

actions with objects during the performance of an activity, and changes to illumination,

pressure and temperature in the environment due to activities. Table 1 shows some

example data from a smart home with ambient motion sensors.

Suppose there are two homes (a source home and a target home) equipped with these

ambient sensors. The source home already has an activity recognition model trained for

that home. The target home does not yet have an activity recognition model trained. In

order to use the model from the source home to recognize activities in the target home,

they must use a common feature-space. A common approach to activity recognition

using ambient sensors is to formulate the problem as a bag of sensors approach over

some sliding window of time or sensor events. This means that the sensors from one

home must be mapped onto the sensors from the other home. Specifically, the features
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of one domain must map onto the features (or dimensions) of the other domain. This

could be accomplished by mapping the sensors in the target home to the sensors in the

source home, mapping the sensors in the source home to sensors in the target home,

or mapping both the source and target sensors to a common set of generic labels (for

example, location-based mapping such as kitchen, bedroom, etc).

This mapping is just the initial step in the transfer learning. Once a shared feature-

space is achieved, additional transfer learning may be necessary to resolve differences in

the marginal probabilities (the residents in one home may spend half the day sleeping,

while the residents in the other home only sleep 6 hours a day) or differences in the

classification task (the set of activities recognized may be different). The techniques we

present here focus on achieving this initial transformation of the feature-space.

3.3 Methods

Traditionally, domain adaptation problems have focused on the case when Ds 6= Dt,

usually because P (Xs) 6= P (Xt). For example, in activity recognition, the behavior

of an individual may change over time, multiple individual may utilize the same space

differently. This creates situations where the feature-space has not changed by the prob-

ability distribution of the features over that feature-space has changed. When domain

adaptation has been applied to problems where χs 6= χt there is usually a trivial transfor-

mation between feature spaces. An example of this is found in document classification,

where the domain dimensions are typically word counts in each document. To compare

documents with different words, a user can set the word counts for the unseen words to

zero. This allows the user to easily define a common feature space between documents.
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Additional transfer learning techniques may still be necessary because P (Xs) 6= P (Xt)

but the initial feature-space transformation is trivial. This trivial transformation works

because the semantic meaning of the dimensions is assumed to be known.

In this work, we present a heterogeneous transfer learning algorithm where the feature

space must be transformed in a non-trivial manner, as is the case in the new environment

problem. The semantic meaning of the dimensions is assumed to be either unknown or

incompatible between the source and target domains. In the activity recognition domain,

this is equivalent to having sensor values but not knowing from which sensor (type or

location) it originated. Unlike many other heterogeneous transfer learning techniques,

we do not rely on co-occurrence data such as dictionaries, social annotations of images,

or multi-view data. Additionally, we do not assume that P (Ys|Xs) = P (Yt|Xt) or even

that Ys = Yt but we do assume that they must still be related.

We specifically consider the case when both the source and target domains can be

represented by a bag-of-features and related features have similar value distributions.

This does not account for features which may be related through a linear or non-linear

transformation such as x = 10y+3. Differences in linear scaling can be removed through

the application of normalization techniques but this may cause the FSR technique to

incorrectly map features which would otherwise be clearly unrelated.

To achieve the desired feature-space transformation, we view the problem as a new

machine learning task to learn a mapping from each dimension in the target feature space

to a corresponding dimension in the source feature space. More formally this can be

written as follows: Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys

find a mapping θ(χt, χs) such that errorθ(Hs) is minimized where errorθ(Hs) represents

the empirical error on the target domain by using Hs on the mapped target data. Notice
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the distinction between this problem definition and other approaches typically applied to

heterogeneous transfer learning. Traditional heterogeneous transfer learning approaches

usually map source features to target features or source and target features to a com-

mon feature space and then learn a hypothesis on this common feature space. In our

approach however, we map the target features to source features and we use an already

learned hypothesis to guide the mapping process and avoid the duplication of work. If

the mapping process proceeded in the other direction we would need to relearn a new

hypothesis for each step of the search which would greatly increase the computational

complexity of these techniques. By mapping from target to source we also gain the abil-

ity to combine multiple data sources through ensemble learning which will be discussed

in Section 3.4. It is possible to relearn a new hypothesis after performing the mapping.

It is also possible to apply additional transfer learning approaches after first obtaining

a unified feature-space.

The number of possible mappings between source and target feature spaces grows

exponentially as the number of features increases. Even for lower dimensional data,

searching through all possible mappings quickly becomes computationally infeasible.

Using feature-feature, feature-instance or instance-instance co-occurrence data could be

used to guide the search but FSR operates under the assumption that this type of data is

not available. When labeled data is available in the target domain, the empirical error of

a classifier tested on the mapped data can provide a quantitative method for evaluating

candidate mappings. Using the labeled target data we present three FSR algorithms.

First we present Genetic Algorithms for Feature-Space Remapping (GAFSR) which

explores the search space using random permutations of possible mappings. This method

is the most computationally expensive but also explores the largest amount of mapping
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space. Next we present Greedy Search for Feature-Space Remapping (GrFSR) which

applies the fitness function of the genetic algorithm to greedily select an approximation

to the optimal mapping without searching through all possible mappings. Finally, we

present Similarity Feature-Space Remapping (SFSR) which uses less computationally

expensive heuristics to select an approximation to the optimal mapping by comparing

the similarity between features in the source and target space. The SFSR technique has

two different variations Informed SFSR (ISFSR) and Uninformed SFSR (USFSR).

The techniques we propose generate a many-to-one mapping. This is because mul-

tiple dimensions (features) in the target space can be mapped to a single feature in the

source space but one feature in the target domain will never map to multiple features in

the source domain. We could make the mapping stricter by enforcing a one-to-one map-

ping (with null mappings allowed) or we could relax the mapping by allowing weighted

many-to-many mappings. However, if we allowed a many-to-many mapping the search

space (which is already too large for brute-force searching) would grow even larger. For

many situations, a many-to-one mapping makes the most sense intuitively. For exam-

ple, consider a hallway which is lined with several narrow-view motion sensors in one

apartment and a hallway which has a single wide-view motion sensor in another apart-

ment. Each narrow-view motion sensor could map to the single wide-view motion sensor

in the other apartment but the wide-view motion sensor should just map to the single

narrow-view motion sensor which best encapsulates its behavior.

After the mapping has been obtained, the mapping must be applied to the target

data to be classified using the hypothesis learned on the source data. Because these

techniques produces a many-to-one mapping, the procedure for combining the multiple

dimensions must also be defined. For dimensions with numerical values, one could use an
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Figure 4: Flowchart of the mapping process. The source and target data are first
analyzed to find a mapping from the target features to the source features. Next, the
target data is mapped onto the source feature space. Finally, the mapped target data
can be classified using a classifier which has been trained on the source data.

aggregate value such as minimum, maximum, total, or average. For categorical values,

one could use a voting protocol. For each instance in the target data the features are

mapped to the source features. When multiple features in the target data are mapped

to single feature in the source data, the feature values are combined using the specified

aggregation protocol. In this work we use the summed value to aggregate target features

mapped to the same source feature. The entire process is summarized in Figure 4. The

techniques differ in how they create the map but the rest of the steps are all identical.

3.3.1 Genetic Algorithm Feature-Space Remapping

The goal of the GAFSR technique is to find a near optimal mapping θ(χt, χs) such that

the error of the hypothesis on the target data is minimized. If n is the number of features

in χs and m is the number of feature in χt then there are nm possible mappings, making

it impractical to try all possible mappings. Instead, GAFSR uses a standard genetic

algorithm approach to explore the search space looking for reasonable solutions.

Genetic algorithms are a class of local search techniques which has been studied for

the past several decades [67, 96]. The motivation for genetic algorithms is rooted in the
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biological process of reproduction and evolution [38]. The basic idea is to start with a

random population of strings (chromosomes) and evaluate their fitness according to a

specified function (the fitness function). Chromosomes pairs are then selected (usually

probabilistically according to the normalized fitness score) and the selected chromosomes

are mated via crossover to produce new offspring. This process is then repeated a number

of times until a stopping criterion is met. Pseudocode for GAFSR is found in Algorithm

1. The key components of a genetic algorithm are: the chromosome definition, the fitness

function, and the mutation parameters. Each are described below.

Algorithm 1: GAFSR Algorithm

Data: Xt Target Features
Data: Xy Source Features
Data: s population size, g number of generations
Data: c cross-over rate, r mutation rate
Generate s initial random mappings from Xt to Xy // i.e Chromosomes

for i← 0 to g do
Evaluate fitness of each mapping;
Select pairs of mappings probabilistically weighted according to fitness;
With probability c, Swap portions of mappings between the selected pair;
With probability r, Mutate the mappings;

Evaluate fitness of each mapping;
Return mapping with best fitness;

The chromosome is defined such that each sensor in the target dataset is a gene with

n+1 possible values (1 for each source feature plus a null feature), thus the chromosome

is composed of m genes with n + 1 possible values for each gene. From a practical

standpoint, n can be seen as the number of sensor in the source domain and m can be

seen as the number of sensor in the target domain when using a bag of sensors approach

to the activity recognition problem.

We compare two different fitness functions based upon the unweighted average recall
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(UAR) and the accuracy (ACC) of the target dataset obtained using a näıve Bayes

classifier which has been trained on the source dataset. The unweighted average recall

is given by Equation 3.1 and the accuracy is given by Equation 3.2. In both of these

equations N is the total number of instances, K is the number of labels, and A is the

confusion matrix where Aij is the number of instances of class i classified as class j.

UAR =
1

K

K∑
i=1

Aii∑K
j=1Aij

(3.1)

ACC =
1

N

K∑
i=1

Aii (3.2)

The first fitness function, given in Equation 3.3, is defined as just the UAR of the

target dataset obtained using a näıve Bayes classifier which has been trained on the

source dataset. We use the average recall instead of the overall accuracy because the

datasets are imbalanced. A large percentage of the instances are represented by only a

few class labels. Using the unweighted average class recall is one technique for accounting

for this imbalance [107]. The second fitness function, given in Equation 3.4, is defined as

the twice the UAR plus the overall accuracy (ACC) on the target dataset obtained using

a näıve Bayes classifier which has been trained on the source dataset. This function is

chosen to improve the overall accuracy obtained by the mapping technique while still

preserving the high unweighted average recall.

F1 = UAR (3.3)

F2 = ACC + 2 ∗ UAR (3.4)
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The parameters of the genetic algorithm are chosen using limited validation testing

to find parameters which yield decent results. They are set to the following values:

• Population Size: 118

• Mutation rate: .06

• Crossover rate: .80

• Crossover type: 2-point cross-over

• Number of Generations: 100

In addition, we use the technique referred to as elitism where the best solution so

far is preserved across generations. This prevents the algorithm from losing the best

solution due to the random mutations and crossovers.

The asymptotic run-time of the proposed genetic algorithm is O(S ∗G∗N ∗ds) where

S is the size of the population, G is the number of generations N is the number of labeled

target instances and ds is the number of dimensions in the source feature-space. We have

purposely excluded the cost of creating the population for each generation because the

cost of the fitness function shown here is the dominating factor. For the size of the

activity recognition datasets we test here, S ∗G ≈ d2s giving us an asymptotic run-time

of O(N ∗ d3s).

3.3.2 Greedy Search for Feature-Space Remapping

An alternative to genetic methods for searching a space is applying a greedy search, which

does not rely on the partially-random biologically-inspired search mechanism found in
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genetic algorithms. To compare our genetic solution to a greedy approach, we intro-

duce GrFSR which applies the same fitness function employed by the genetic algorithm

to greedily search through the mapping space and find an approximation to the best

mapping function.

The greedy algorithm selects a single feature in the target domain to consider. It then

maps this feature to all possible features in the source domain one at a time (including

the null feature, which in effect ignores the corresponding feature in the target domain)

while all other features in the target domain are mapped to null. The resulting mapping

is applied to the labeled target data and tested using the hypothesis obtained from the

source data. The mapping that produces the best result according to Equation 3.4 is

selected as the best mapping for that target feature. This is repeated for all the target

features. A final mapping is produced by combining the best mapping produced for each

target feature. Pseudocode for the algorithm is given in Algorithm 2.

Algorithm 2: GrFSR Algorithm

Data: Xt Target Features
Data: Xs Source Features
for x ∈ Xt do

for y ∈ Xs do
fit[y]← Fitness(x→ y);

mapping[x]← max(fit);

Return mapping;

The asymptotic run-time of GrFSR is O(ds ∗ dt ∗ N ∗ ds) where ds is the number

of dimension in the source feature-space, dt is the number of dimension in the target

feature-space and N is the number of labeled data instance in the target domain. This

run-time is equivalent to O(Nd3) if ds ≈ dt.
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3.3.3 Similarity Feature Space Remapping

In Similarity Feature Space Remapping, rather than exploring the entire search space of

possible mappings we instead use heuristics to select a mapping that approximate the

optimal mapping. SFSR computes meta-features as a means to relate source and target

features. These meta-features can be defined and computed multiple ways which will be

discussed in Sections 3.3.3 and 3.3.3. Algorithm 3 shows the pseudocode for the SFSR

technique and each step is discussed in detail below. To simplify the presentation of the

SFSR algorithm, for now let us assume that meta-features have already been calculated

for the source and target features. One can think of the meta-features as a vector of

numbers assigned to each feature in the source and target space. These vectors can then

be compared to each other to find features with similar meta-features.

Algorithm 3: SFSR Algorithm

Data: Xt Target Features
Data: Xy Source Features
for x ∈ Xt do

metas[x]← ComputeMetaFeatures(x);

for x ∈ Xs do
metas[x]← ComputeMetaFeatures(x);

for x ∈ Xt do
for x ∈ Xs do

similarity[x][y]← ComputeSimilarity(metas[x], metas[y])

for x ∈ Xt do
mapping[x]← max(similarity[x]);

Return mapping;

SFSR computes a similarity matrix S between source features and target features.

This is done by computing a similarity score for each feature-feature pair based upon

the meta-features computed for the given features. The similarity score is computed as
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the average similarity between the source and target meta-feature values. Formally, this

score is given by Equations 3.5 and 3.6.

Sxy =
1

N

N∑
i=1

Ω(mi
x,m

i
y) (3.5)

where x is the xth source feature, y is the yth target feature, N is the number of meta-

features and Ω is the normalized similarity between two meta-features mi
x and mi

y, the

ith meta-feature of feature x and y respectively. We calculate the normalized similarity

between two meta-features as the absolute value of the difference between meta-feature

values divided by the maximum possible difference between the meta-features to obtain

a normalized value between 0 and 1. This is shown in Equation 3.6.

Ω(mi
x,m

i
y) = 1−

|mi
x −mi

y|
max(mi

x,m
i
y∀x ∈ Ds∀y ∈ Dt)−min(mi

x,m
i
y∀x ∈ Ds∀y ∈ Dt)

(3.6)

If the meta-feature values are all positive, which is the case for the experiments we

show here, the normalized similarity equation can be simplified to:

Ω(mi
x,m

i
y) = 1−

|mi
x −mi

y|
max(mi

x,m
i
y∀x ∈ Ds∀y ∈ Dt)

(3.7)

SFSR computes a mapping L : y → x by selecting source feature x with maximal

similarity to target feature y as given by the similarity matrix S.

L(y) = arg max
x∈Ds

Sxy (3.8)

If we assume the meta-feature computation is linear, SFSR has a running time of

O(ds ∗ dt + n+m) where ds and dt is the dimensionality of the source and target data,

respectively, and n and m are the number of source and target instances, respectively.
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This run-time is explained by the following observations. First, each dimension in the

target domain is compared to each dimension in the source domain, resulting in the

ds ∗ dt term. Second, assuming the meta-feature computation is linear in the number

of data instances, then computing the meta-features requires O(n + m) time. Finally,

applying the mapping requires a single pass through the target data or O(m) time.

As mentioned earlier, the defining and calculating of meta-features can be done in

multiple ways. If some labeled target data is available, it can be used to calculate

domain-independent meta-features (i.e. meta-features that can be applied to any het-

erogeneous transfer learning problem). We refer to this as Informed Similarity Feature-

Space Remapping (ISFSR) because it requires the labeled target data. If no labeled

target data is available then domain-dependent meta-features must be defined. We refer

to this as Uninformed Similarity Feature Space Remapping (USFSR) because it does

not require the label target data.

Informed Similarity Feature-Space Remapping

Searching through all possible mappings to find the mapping which minimizes the error

of the hypothesis on the target data is computationally expensive. However, since the

hypothesis has been learned using the source training data one would expect the error

to be minimized by selecting mappings for which the feature-label co-occurrence data is

similar in the source and target datasets. This leads to our first heuristic for mapping

source and target features. ISFSR computes the feature-label co-occurrence data for

each feature in the source and target space by calculating the expected value of the

feature given the label using the labeled training data. More formally, if Y = Ys ∪ Yt
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then the feature-label co-occurrence data for each feature and label is computed as:

E(x|c) =
1

nc

n∑
i=1

xi (3.9)

where x is the feature, c is the label such that c ∈ Y , nc is the number of data instances

with label c, xi is the value of feature x on the ith data instance with a label of c. This

assumes a real-valued number space. One could easily extend this to categorical values

by using the count of occurrences of each category as an estimation of the probability

that the given feature will have the given categorical value.

Each feature-label co-occurrence value now becomes a meta-feature for the given

feature. Thus E(x|c) is a meta-feature for feature x and x will have z = |Y | such

meta-features, one for each label c. Using feature-label co-occurrence data as a meta-

feature keeps the ISFSR asymptotic run time within the previously stated bound of

O(ds ∗ dt + n+m). This is because the meta-feature calculation is linear in the number

of instances. We compute E(x|c) for each label c ∈ Y . This can be done in a single

pass through the datasets and thus requires O(n+m+ y) time. Typically n >> y and

m >> y so this term can be simplified to just O(n+m).

Additionally, using feature-label co-occurrence data for the meta-features provides

domain independent meta-features so that meta-features for the specific problem do not

need to be specified by a domain expert. Thus any domain for which labeled data exists

can apply this feature mapping technique without setting any parameters, defining any

relations, or defining any additional meta-features.

To understand why using the the feature-label co-occurrence data as a heuristic to

find an approximation to the optimal mapping works we go back to the original problem

definition. Given source data Xs, target data Xt and a hypothesis Hs : χs → Ys
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find a mapping θ(χt, χs) such that errorθ(Hs) is minimized. This error is minimized by

maximizing the number of agreements between HS(θ(q)) and ft(q) as shown in Equation

3.10 where q is a data instance in Xt and θ(q) is the mapped data in the source domain

space.

max
θ

∑
q∈Xt


1, if Hs(θ(q)) = ft(q).

0, if Hs(θ(q)) 6= ft(q).

(3.10)

A näıve Bayes classifier can learn a hypothesis by estimating P (c) and P (qi|c) based

upon their observed frequencies and applying Bayes rule to estimate the posterior prob-

ability P (c|q). The class c with the highest posterior probability is selected as the class

label for q [68]. Thus, if the hypothesis is expressed as a näıve Bayes classifier and if we

approximate the true predictive function ft() also using a näıve Bayes formulation then

Equation 3.10 can be expressed as shown in Equation 3.11.

max
θ

∑
q∈Xt


1, if arg maxc∈Y P (c)

∏dt
i=1 P (θ(qi)|c) = arg maxc∈Y P (c)

∏dt
i=1 P (qi|c).

0, if arg maxc∈Y P (c)
∏dt

i=1 P (θ(qi)|c) 6= arg maxc∈Y P (c)
∏dt

i=1 P (qi|c).
(3.11)

Under this representation, selecting the mapping for each feature that has the most

similar feature-label co-occurrence value can be seen as a greedy approximation to mini-

mize the empirical error on the mapped target data. Indeed, when the feature values are

restricted to either 0 or 1, the feature-label co-occurrence value E(x|c) is equivalent to

the estimation of the probability that the feature has a value of 1 given the class label,

P (x = 1|c).



62

Uninformed Similarity Feature-Space Remapping

When labeled data is unavailable in the target domain we still need some way to link

correlated source and target features. In this case we define meta-features which can

be used as a heuristic to guide the mapping process. Meta-features should have the fol-

lowing attributes: 1) The meta-features should not depend on any relationship between

different features. 2) Features with similar meta-feature values should also have similar

conditional probability distributions. The first stipulation allows meta-features to be

applied, calculated and compared between different feature spaces.

To clarify this concept consider the following examples. In activity recognition using

motion sensors, the time of day when motion sensor A fires would be an acceptable meta-

feature. On the other hand, the amount of time between sensor A firing and sensor B

firing would not be an acceptable meta-feature because it depends on the relationship

between sensor A and sensor B. However, the amount of time between sensor A firing

and any unspecified sensor firing is acceptable because it again depends only upon sensor

A.

The second stipulation is important because it provides a basis for using the meta-

features as a heuristic to select a mapping between features. The meta-features provide

some indication that the features have similar conditional probability distributions and

if the conditional probability distributions of two features are similar then the mapping

process will be more likely to select that pair for mapping.

Defining meta-features and creating the feature dataset is a domain specific task.

The meta-features used for activity recognition may not be applicable to the document

classification domain. In Table 9 we describe the meta-features we use for the activity
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recognition problem and using the example data shown in Table 1 we show the meta-

feature values for some of the sensors. These meta-features have been chosen to be

consistent with the previously discussed meta-feature stipulations.

Table 9: Meta-features defined for activity recognition.

Meta-feature Description Meta-
Feature

M021 MA020 M018

average sensor event frequency over 1 hour
time periods (x24)

03:00 3 1 0
04:00 2 0 0
05:00 2 0 0
06:00 4 0 0
07:00 0 0 0
08:00 14 14 2

average sensor event frequency over 3 hour
time periods (x8)

03:00 7 1 0
06:00 18 14 2

average sensor event frequency over 8 hour
time periods (x3)

00:00 11 1 0
08:00 14 14 2

average sensor event frequency over 24
hour time periods (x1)

00:00 25 15 2

average and standard deviation of the time
of day of this sensor event (seconds)

avg. 26015.36 30356.40 31594.5
std. dev. 6831.72 4555.85 2.50

average and standard deviation of the time
between this sensor event and the previous
sensor event (seconds)

avg. 760.79 1.34 1.31
std. dev. 1862.31 1.02 0.52

average and standard deviation of the time
between this sensor event and the next sen-
sor event (seconds)

avg. 722.94 13.66 5.85
std. dev. 1833.35 44.59 2.11

average and standard deviation of the time
between this event and the next event from
this sensor (seconds)

avg. 761.41 1305.67 4.53
std. dev. 1862.06 4699.58 0.0

probability the next sensor event is from
the same sensor

prob. 0.76 0.72 0.0

All of these meta-features can be computed in linear time therefore the asymptotic

run time of O(ds ∗ dt + n+m) is still achieved.

As an extension, if labeled target data is available, one could easily combine the

domain-dependent meta-features with the feature-label co-occurrence meta-features to

provide additional information when selecting a feature-space mapping. One could also

compute the features on a per-class basis. For example, the frequency of a sensor event
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could instead be computed as the frequency of a sensor event given the activity label.

However, in order to avoid over-fitting the data, this may require more labeled data than

is typically available in transfer learning scenarios.

3.4 Combining Multiple Data-sources

One of the major benefits of the above mapping approaches is that they can be used to

combine data from multiple source domains in a straightforward manner. One example

where multiple source domains might arise is a single individual with labeled data in

multiple smart environments (home, office, car, etc). Another example would be multiple

smart apartments with labeled data which can be used to recognize activities in new

smart apartment. An ensemble classifier can be built by mapping the target domain to

each source domain and training a separate base classifier for each source domain. The

output from these source classifiers can then be combined by the ensemble meta-classifier

to make the final prediction. We refer to this as Ensemble Learning via Feature-Space

Remapping (ELFSR).

Ensemble methods have been used in a variety of situations with great success.

According to Hansen and Salamon, a necessary and sufficient condition for ensemble

classifiers to be more accurate than any of the individual classifiers are for the classifiers

to be accurate and diverse [42]. An accurate classifier is one which has a classification

accuracy better than random guessing [32]. Two classifiers are diverse if the errors they

make are different (and preferably uncorrelated) [32]. Most ensemble techniques defined

to date generate a set of diverse classifiers. Bagging, for example, generates classifiers

by repeatedly sub-sampling the original data with replacement [10]. Boosting iteratively
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reweights samples based on the accuracy of the previous iteration [36]. In ELFSR, each

classifier is drawn from a different domain, leading to a naturally diverse set of classifiers.

Once the classifiers are generated, the output must be combined to obtain the final

result. Several approaches have been used including majority voting, weighted voting,

summing the probabilities, and training a new learner on the output of the classifiers or

stacking [118]. Stacking is a supervised technique and thus requires additional labeled

data to train the ensemble classifier. This means that stacking can be readily combined

with ISFSR, which already uses labeled data.

Work on ensemble classifiers for transfer learning has mainly focused on boosting

techniques [80, 120, 125]. As there has been very little work on transfer learning using

voting or stacking ensemble classifiers, we compare the results of several different en-

semble configurations using activity recognition from multiple smart apartments as the

source domains and activity recognition for a different smart apartment as the target

domain. Specifically, we consider two voting ensembles (a majority voting ensemble and

a summation voting ensemble), and two stacking ensembles (via näıve Bayes and via a

decision tree). The voting ensembles have the advantage of not requiring any labeled

data in the target domain, while the stacking techniques require a small amount of

labeled data.

3.4.1 Voting Ensemble

One of the simplest methods for combining multiple classifiers is through majority voting.

Each classifier votes for the class label it predicts for the given instance and the label

receiving the most votes wins.
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The drawback to the majority voting ensemble classifier is that the ensemble throws

away important information by only considering the most likely label as predicted by

each classifier. The summation voting ensemble classifier rectifies this weakness by

summing up the predicted probability of each label for each classifier and then assigning

the label with the highest summed probability.

3.4.2 Stacking

In stacking, the output of each source classifier is fed into the ensemble classifier which

then produces the final classification. Here we consider two different classification algo-

rithms for the ensemble classifier, näıve Bayes and decision trees. One of the drawbacks

to using stacking is the requirement of labeled data to train the ensemble classifier.

Rather than test both USFSR and ISFSR with the stacking technique we only consider

the result of using ISFSR since ISFSR already uses a small amount of labeled data in the

target domain. We use stacking with ISFSR without requiring any additional labeled

data in the target domain.

3.5 Conclusions

The new environment problem is encountered every time a sensing platform is deployed

to a new environment. This often leads to a new feature-space since the environment

is likely to have require different sensors in different quantities in different locations.

The previous approaches to solving this problem requiring learning a new model specific

to the new environment or attempting to learn a generalized model using a domain

expert to provide a mapping between feature-spaces. In this chapter we have proposed
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Feature-Space Remapping as a novel technique to handle the new environment problem.

The FSR algorithms we propose each have different trade-off in regards to the run-time

complexity, the amount of labeled data required, and the availability of source feature-

spaces. GAFSR and GrFSR are both more expensive in terms of run-time but will

likely yield a better mapping than ISFSR. ISFSR is more efficient but will likely yield

poorer mappings. USFSR is the only technique which can be used when no labeled

data is available in the target domain and also runs efficiently. USFSR also requires

domain-specific knowledge. ELFSR is the best technique when multiple source datasets

are available since it is able to combine information from each dataset.
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Chapter 4

New Sensing Problem

4.1 Introduction

Every day brings new advances in ubiquitous computing. Sensing and data processing

capabilities are being introduced and embedded into our homes, our phones, our cars,

our clothing and our world. Despite the ever-increasing prevalence of heterogeneous

sensing platforms, most activity recognition research remains segmented and focused

on individual sensor types. Researchers are developing activity recognition algorithms

using cameras, wearable accelerometers, or ambient motion sensors with little overlap

between different sensor modalities. The resulting techniques fine-tune performance for

an isolated class of devices but do not make effective use of other sensor devices as they

become available.

Neglecting the presence of additional sensor devices ignores the wealth of informa-

tion that may otherwise be readily available. In this chapter, we introduce a method

for different smart devices and sensors to share information in order to achieve more

accurate activity recognition. We postulate that heterogeneous devices can collaborate,

utilizing data from smart phones, smart homes, smart vehicles, and other data sources

to create a personal activity recognition ecosystem. We focus specifically on the ability

to transfer knowledge between heterogeneous activity recognition systems with the goal

of increasing the accuracy of the collaborative system while decreasing the amount of
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labeled data that is necessary to train the system.

As an example, consider the problem of activity recognition in a smart home. A

model can be trained to recognize an activity that occurs in a particular home based on

motion sensor data. If the user also wants to start using a phone-based recognizer, the

labeling-and-training process must be repeated. To overcome this problem, we propose

designing inter-device multi-view learning techniques to allow the existing smart home to

act as a teacher for the new smart phone. We compare alternative multi-view approaches

and empirically compare the approaches using heterogeneous activity data. We also

consider extensions to the multi-view approaches which can handle three or more views.

Each view may have different amounts of labeled training data. Each view may also have

differ in their ability to differentiate between classes. This results in the various views

having different levels of achievable accuracies. We empirically evaluate the impact of

different accuracies under several multi-view approaches.

4.2 Background

Multi-view machine learning algorithms represent instances using multiple distinct fea-

tures sets or views [100]. The relationship between views can be used to align the feature

spaces using methods such as Canonical Correlation Analysis [46] or Manifold Alignment

[114]. Alternatively, multiple classifiers can be trained for each view and the labels can

be propagated between views as in Co-Training [9] or Co-EM [70].

Multi-view learning has also been used as a heterogeneous transfer learning technique

[78] that applies knowledge learned from a previous domain and task to a new, related

domain and task.
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Figure 5: Multi-view transfer learning. The dark colored bands represent labeled data
while the light gray bands represent unlabeled data. In informed multi-view transfer
learning both views have some labeled data and a large amount of unlabeled data. In
uninformed multi-view transfer learning only the source view (View 1) has labeled data
but both views have unlabeled data.

One way to categorize transfer learning approaches is based upon the availability of

labeled data. The terms supervised and unsupervised learning refer to the availability

of labeled data in the source space (view 1), while the terms informed and uninformed

learning refer to the availability of labeled data in the target space (view 2). Figure 5

illustrates the difference between informed supervised transfer learning and uninformed

supervised transfer learning for multi-view learning [21]. In this figure, colored bands

represent the labeled activities while the light gray bands represent unlabeled activities.

We investigate several multi-view learning techniques to transfer knowledge between

different views. We consider both informed and uninformed techniques and we analyze

the trade-off of each technique. We also propose the use of a teacher-learner technique

for this problem [53]. We discuss the relationship between this and other multi-view

techniques. In addition, we derive tighter estimates and bounds of the learner accuracy

and highlight the applicability of Probably Approximately Correct (PAC) bounds to the

teacher-learner technique.



71

4.3 Methods

To illustrate our approach, consider a scenario in which a home has been equipped

with multiple sensors to monitor motion, temperature, and door open/closures. Sensor

data is collected, annotated with ground truth activity labels, and used to train an

activity classifier. The resident recently purchased a smart phone and wants to train

the phone sensors to recognize the same activities. This way the phone can continue to

monitor activities that are performed out in the community and can update the original

model when the resident returns home. Whenever the smart phone is located inside

the smart home, both sensing platforms will collect data while activities are performed,

resulting in a multi-view problem where smart home sensor data represents one view

and smart phone sensor data represents a second view. Working from this example, we

now described our proposed approaches.

4.3.1 Informed Multi-view Learning

Co-Training and Co-EM represent informed supervised learning techniques. Co-Training

is one of the first developed multi-view learning techniques [9]. In Co-Training, a small

amount of labeled data in each view is used to train two classifiers, one for each view.

These classifiers then assign labels to a subset of the unlabeled data. The newly-labeled

instances are added to the set of labeled data and the process is repeated. A simple

method to extend this approach to multiple views is to add additional classifiers, one

for each view. Our Co-Training approach, adapted from Blum and Mitchell [9], is

summarized in Algorithm 4. This algorithm is described for the binary classification

task but easily extends to k-ary classification problems by allowing each classifier to
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Algorithm 4: Co-Training Algorithm

Data: a set L of labeled training examples
Data: a set U of unlabeled training examples
Create a pool U ′ of u examples, U ′ ⊆ U ;
while U ′ 6= ∅ do

Use L to train classifier h1 for view 1;
Use L to train classifier h2 for view 2;
...;
Use L to train classifier hk for view k;
Label most confident p positive examples and n negative examples from U ′

using h1;
Label most confident p positive examples and n negative examples from U ′

using h2;
...;
Label most confident p positive examples and n negative examples from U ′

using hk;
Add the self-labeled examples to L;
Replenish U ′ using k ∗ p+ k ∗ n examples from U ;

label n positive examples for each class instead of labeling p positive examples and n

negative examples.

Co-EM is a variant of Co-Training that has been shown to perform better in certain

situations [70]. Unlike Co-Training, Co-EM labels the entire set of unlabeled data every

iteration. Again, a simple method to extend this approach to multiple views is to

add additional classifiers, one for each view. The Co-EM algorithm is summarized in

Algorithm 5. Convergence can be measured here as the number of labels that change

each iteration. Alternatively, a fixed number of iterations can be specified.

4.3.2 Uninformed Multi-view Learning

Manifold Alignment has been proposed as a technique for transferring knowledge be-

tween two different views without requiring any labeled data [114]. It assumes that
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Algorithm 5: Co-EM Algorithm

Data: a set L of labeled training examples
Data: a set U of unlabeled training examples
Use L to train classifier h1 on view 1;
Create a set U1 by using h1 to label U ;
for i← 0 to n do

Use L ∪ U1 to train a classifier h2 on view 2;
Create a set U2 by using h2 to label U ;
Use L ∪ U2 to train a classifier h3 on view 1;
...;
Use L ∪ Uk−1 to train a classifier hk on view k;
Create a set U1 by using hk to label U ;

the data from both views share a common latent manifold which exists in a lower-

dimensional subspace. The basic idea is that the two feature spaces can be projected

onto a lower-dimensional subspace and the pairing between views can then be used to

optimally align the subspace projections onto the latent manifold. A classifier can then

be trained using projected data from the source view and tested on projected data from

the target view. The details are shown in Algorithm 6.

Algorithm 6: Manifold Alignment Algorithm

Data: a set L of labeled training examples in view 1
Data: a set U1 and U2 of paired unlabeled training examples, one for each view
X,EV ← PCA(U1) ;
Y ← PCA(U2) ;
// Apply Procrustese Analysis UΣV T ←SVD(Y TX);
Q← UV T ;
k ← Trace(Σ)/Trace(Y TY );
Y ′ ← kY Q;
Project L onto low-dimensional embedding using EV ;
Train classifier on projected L;
Test classifier on Y ′;

The final existing method we consider is a teacher-learner model that was introduced

by Kurz et al. to train new sensor systems using the output of existing sensor systems
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[53]. The details of the method are shown in Algorithm 7. The approach is ideal when

a new sensor (or set of sensors) is added to an existing system. This creates a natural

setting where labeled data is available in the source view (i.e. the existing sensors)

but not in the target view (i.e. the new sensors). When activities of interest occur, the

existing system can generate the activity label and share that label with the new system.

We note that the teacher-learner algorithm is equivalent to a single-iteration ver-

sion of Co-EM when no labeled data is available in the target view. Recognizing the

teacher-learner model as a variation of multi-view learning allows us to provide a stronger

theoretical foundation for the technique. Valiant introduces the framework of Probably

Approximately Correct (PAC) learning which provide bounds on the probability that

the selected function will how a low generalization error [106]. Blum and Mitchell show

that multi-view learning has PAC bounds if the target concept is learnable from random

classification noise in the standard PAC model [9]. Specifically, they prove that given

three assumptions the PAC bounds hold for learning in the second view. The assump-

tions are: 1) the two views are conditionally independent given the class label, 2) either

view is sufficient to correctly classify the examples, and 3) the accuracy of the first view

is at least weakly useful. Thus under these assumptions we are guaranteed that the

resulting classifier for the target view will have PAC bounds.

In addition to the simple extensions to these algorithms, which allow for more than

two views to be used, we also consider another technique for incorporating multiple

views. We refer to this technique as Personalize ECOsystems with Ensembles (PECO-

E). In this approach, multiple views are first combined into a single view using ensemble

methods so that only two views are present. The Co-Training, Co-EM and Teacher-

Learner algorithms can then be applied on these two views. In this work, we use a
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Algorithm 7: Teacher-Learner Algorithm

Data: a set L of labeled training examples in view 1
Data: a set U of unlabeled training examples
Use L to train a classifier h1 on view 1;
Create a set U1 by using h1 to label U ;
Use U1 to train a classifier h2 on view 2;
Use U1 to train a classifier h3 on view 3;
...;
Use U1 to train a classifier hk on view k;

Algorithm 8: Personalized Ecosystem Algorithm

Data: a set L of labeled training examples in view 1
Data: a set U of unlabeled training examples
Use L to train a classifier h1 on view 1;
Create a set U1 by using h1 to label U ′ ⊂ U ;
L→ L ∪ U1;
U → U − U1;
Apply Algorithm 4 or 5

weighted voting ensemble where a classifier from each view votes for multiple class

labels. Each vote is weighted by the classifier’s confidence in the classification label.

We also propose a new algorithm Personalized ECOsystem (PECO) which is a com-

bination of the teacher-learner algorithm and an informed transfer learning technique

such as Co-Training or Co-EM. The pseudo-code is shown in Algorithm 8. We hypothe-

size that such a combination will increase the accuracy of the learner without requiring

that any labeled data be available to the learner. Initially, the teacher provides a few

labels to the learner using Algorithm 7. Then we transition to an iterative model by

subsequently applying either Algorithm 4 or Algorithm 5. In this way, the learner can

continue to benefit from the expertise of the teacher while at the same time contributing

back its own expertise.

In our home-phone scenario, the smart home may initially act as a teacher because it
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has labeled activity data. When the home and phone occupy the same space the home

can opportunistically “call out” activity labels in situations when the home and phone

both observe the resident performing an activity. The resident may leave the home,

taking his phone with him. While out, the phone will observe new activity situations

and possibly receive activity labels for those situations. When the individual returns

home with the phone, the home and phone can now act as colleagues, providing expertise

from each classifier to improve the robustness of the individual activity models on each

sensor platform.

4.4 Accuracy Bounds

Without labeled data in the target view, we cannot directly compute empirical perfor-

mance measures such as model accuracy. We can, however, still compute bounds for the

expected-case, worst-case, and best-case performance of the learner. To do so we make

the assumption that the previously observed accuracy of the teacher on the labeled data

is a good predictor of the accuracy of the teacher on the unlabeled data and that we

know the level of agreement between the teacher and the learner. We define level of

agreement between the teacher and the learner in Equation 4.1 where N is the number

of unlabeled instances, h1(x) is the teacher’s prediction for x, and h2(x) is the learner’s

prediction for x.

q =
1

N

∑
x∈U


1 if h1(x) = h2(x)

0 if h1(x) 6= h2(x)

(4.1)
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For binary classification tasks, if p represents the accuracy of the teacher then Equa-

tion 4.2 is the expected accuracy of the learner under the assumption that the agreement

between the teacher and the learner is independent of whether or not the teacher cor-

rectly predicts the class label.

r = pq + (1− p)(1− q)

= 2pq + (1− q − p) (4.2)

The first term, pq, represents the expected accuracy of the learner given that the

teacher correctly classified the instance. The second term represents the expected accu-

racy of the learner given that the teacher incorrectly classified the instance. While the

first term is straightforward, the second term requires explanation. First, every disagree-

ment between the teacher and the learner on the instances that the teacher misclassifies

results in a correct classification for the learner since this is a binary classification task.

(1 − p) represents the inaccuracy of the teacher and (1 − q) represents the level of dis-

agreement between the teacher and the learner. Thus, (1 − p)(1 − q) represents the

expected accuracy of the learner given that the teacher misclassified the instance.

To prove best-case and worst-case learner accuracy bounds, we split the level of

teacher-learner agreement into two parts. The term q1 represents teacher-learner agree-

ment on instances that the teacher correctly classifies and q2 represents agreement on

instances that the teacher incorrectly classifies. Substituting these values into Equation

4.2 results in Equation 4.3. The resulting accuracy is optimized by maximizing q1 and

minimizing q2.
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r = q1 ∗ p+ (1− p)(1− q2) (4.3)

In this discussion, q1 and q2 are subject to the following constraints: 1) q1 ∗ p+ q2 ∗

(1− p) = q, 2) 0 ≤ q1 ≤ 1, and 3) 0 ≤ q2 ≤ 1. These constraints ensure that the original

level of agreement q is preserved and that q1 and q2 are valid levels of agreement. Note

that in the first constraint, minimizing q2, maximizes q1 and vice versa. If p ≥ q then q2

has a minimum value of 0 and all the constraints are satisfied. This implies q1 = q/p is

the maximum value of q1. Substituting into Equation 4.3 leads to Equation 4.4.

r = q + 1− p (4.4)

If p < q then q1 has a maximal value of 1 and all of the constraints are satisfied. This

implies that q2 = (q−p)/(1−p) is the minimum value of q2. Substituting into Equation

4.3 leads to Equation 4.5

r = p+ 1− q (4.5)

Finally, Equations 4.4 and 4.5 are unified into a single equation which represents the

upper bound of the learner accuracy, as shown in Equation 4.6.

r = 1− |p− q| (4.6)

The lower bound on the learner accuracy is found by minimizing q1 and maximizing

q2 in Equation 4.3 subject to the same constraints on q1 and q2. If (1 − p) ≥ q then

q1 has a minimum value of 0 and all the constraints are satisfied. This implies that
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q2 = q/(1 − p) is the maximum value of q2. Substituting into Equation 4.3 leads to

Equation 4.7

r = 1− p− q (4.7)

If (1−p) < q then q2 has a maximal value of 1 and all of the constraints are satisfied.

This implies that q1 = (q − 1 + p)/p is the minimum value of q1. Substituting into

Equation 4.3 leads to Equation 4.8.

r = q − 1 + p (4.8)

Finally, Equations 4.7 and 4.8 are unified into a single equation which calculates the

lower-bound of the accuracy of the learner in Equation 4.9.

r = |1− p− q| (4.9)

Note that these bounds can be extended to the k-ary classification problem. The

upper bound remains the same. The lower bound becomes 0 if (1 − p) ≥ q and stays

the same if (1 − p) < q. To compute the expected bounds we first note that Equation

4.2 could have an additional term z which is the probability that the learner correctly

classifies an instance given that the teacher misclassified the instance and that the learner

disagrees with the teacher on that instance. This leads to Equation 4.10.

r = pq + (1− p)(1− q)z (4.10)

For binary classification, z = 1 and can therefore be ignored. For k-ary classification

however, z <= 1. We propose two different estimates for z. The first estimate uses the
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number of classes without considering the distribution of the class labels z = 1/(k− 1).

The second estimate makes direct use of the distribution of class labels and is shown in

Equation 4.11 where P (y) is the probability that an instance has a class label of y and

Y represents the set of class labels. P (y) can be estimated using the observed frequency

of each class label.

z =
∑
x∈Y

P (x)
∑
y 6=x∈Y

P (y)P (y)

(1− P (x))(1− P (x))

=
∑
x∈Y

P (x)

(1− P (x))2

∑
y 6=x∈Y

P (y)2 (4.11)

The intuitive explanation of z here is that z is the probability the teacher assigns a

class label of x times the probability that y is the true class label times the probability

the learner selects the correct class label of y all of which is summed over each possible

class label and normalized by the the remaining probabilities given that x is not the

class label.

We also consider another estimation for the expected accuracy of the learner. Rather

than assuming that the agreement between the teacher and the learner is equivalent for

all class labels we instead estimate the following conditional distributions: α = P (h1() =

x|f1() = y), the probability that the teacher classifies an instance as x given that the

instance has a true class label (activity label) of y and β = P (h2() = y|h1() = x), the

probability that the learner classifies an instance as y given that the teacher classified

the instance as x. Both of these probabilities can be estimated without using any labeled

data in the second view. The expected bound is then given by Equation 4.12. In this case

we know longer explicitly distinguish between the teacher being right and the teacher

being wrong. Instead, it is handled implicitly by y = x and y 6= x.
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r =
∑
y∈Y

P (y)
∑
x∈Y

αβ (4.12)

In addition to the previously proposed estimates of the accuracy of the learner, we

also consider the average of the upper and lower bounds. This method avoids calculating

class distributions and conditional probabilities. It also avoids explicit assumptions

about the probability of the teacher and learner agreeing. Instead, the assumptions is

that the learner is unlikely to happen to maximize or minimize Equation 4.3 but will

instead fall in the middle of these two extremes. Interestingly, when p ≥ q and (1−p) < q

then the average of the upper and lower bounds is just q.

Finally, the expected accuracy of the learner can be underestimated but simplified

to r = pq which is the value used by Kurz et al. [53]. These expected, best and worst-

case bounds provide insight on expected performance of the learner by determining

the maximum, minimum and likely actual accuracy of the newly trained system. The

accuracy bounds are computed without needing to obtain labeled data in the target

view. Using labeled data in the source view, the teacher accuracy can be estimated.

Then, using unlabeled data in both the source and target view, the agreement between

the teacher and the learner can be computed. Finally, the accuracy bounds can be

computed using these two values.
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4.5 Conclusions

The new sensing platform problem is encountered every time a new sensing platform

is installed into an environment with a pre-existing sensing platform. When no pre-

existing sensing platform is present, we instead treat it as a new environment prob-

lem. The presence of multiple sensing platforms allows us to frame the new sensing

platform problem as a multi-view transfer learning problem. We have adapted several

multi-view algorithms to this situation. When labeled data is available for each sensing

platform or view, we can use the informed multi-view approaches such as co-training

or co-expectation maximization. When no labeled data is available for the new sensing

platform, the uninformed multi-view algorithms such as teacher-learner and manifold

alignment can be applied. We have also developed two novel algorithms PECO and

PECO-E. PECO-E can be applied to either informed or uninformed transfer learning

while PECO is specifically for the uninformed transfer learning scenario.

When the uninformed transfer learning techniques are applied to the new sensing

platform problem, we have no way of directly computing the accuracy of the newly

trained system since we do not have any manually annotated training data. Instead, we

have developed upper and lower bounds on the accuracy of the newly trained system

given the accuracy of the pre-existing system and the amount of agreement between

the systems. This allows us to train a new activity recognition system and estimate

the accuracy of that system without any human intervention to provide labeled training

examples.
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Chapter 5

Results

5.1 FSR Experimental Results

FSR and its proposed extensions can be applied to a variety of different transfer learning

problems. We primarily evaluate the performance of these techniques in the activity

recognition domain and, for generalizability, we also show some results in the document

classification domain.

5.1.1 Activity Recognition

We use a dataset consisting of data from 18 different smart apartments. The apartments

are single residence assisted-living care facilities. Specific statistics for each apartment

are found in Table 10. Each apartment is equipped with motion sensors and door sensors.

The number of sensors range from 17 to 39 with an average of 28.7 sensors and a standard

deviation of 6.21. The layout for the apartments is shown in Figure 6. Each dataset has

been annotated with 37 different activities, shown in Table 11, with the total amount

of labeled data spanning one month of time per dataset. Not all apartments have all 37

activity labels as indicated in the table. We consider all possible combinations of source

and target datasets, yielding a total of 306 possible pairings. We use a single day of

labeled data for the target domain and all 30 days of labeled data for the source domain.

This data is event-based so we use the event-based feature representation (see Section
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2.2.1) and set the window size k to 10.

Table 10: Summary statistics of the activity recognition dataset

Id # Features # Labels # Instances # USFSR
Meta-Features

# ISFSR
Meta-Features

1 35 29 133157 1575 1295

2 17 26 53669 765 629

3 37 31 178137 1665 1369

4 29 29 57918 1305 1073

5 39 32 141181 1755 1443

6 26 32 149391 1170 962

7 26 30 183945 1170 962

8 26 28 98768 1170 962

9 34 30 102466 1530 1258

10 24 30 143145 1080 888

11 38 30 157736 1710 1406

12 24 29 135451 1080 888

13 32 32 116641 1440 1184

14 26 31 195611 1170 962

15 23 29 100255 1035 851

16 33 32 179693 1485 1221

17 23 29 92740 1035 851

18 24 30 117067 1080 888

Fitness Function

Before comparing the FSR techniques against each other and other baseline techniques,

we first consider the effect of the choice of fitness function on overall performance of

GAFSR. Performance is measured using both the accuracy (given by Equation 3.2) and

the unweighted average recall (given by Equation 3.1). We report both the accuracy and

the recall because accuracy scores are biased towards the majority class. For balanced

class distributions this has little effect on the metric, but it may not be suitable for

unbalanced class distributions. Using the unweighted average recall eliminates this bias

and treats all classes equally [107]. Note that accuracy can also be considered as the
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(a) Apt. 1 (b) Apt. 2 (c) Apt. 3 (d) Apt. 4

(e) Apt. 5 (f) Apt. 6 (g) Apt. 7 (h) Apt. 8

(i) Apt. 9 (j) Apt. 10 (k) Apt. 11 (l) Apt. 12

(m) Apt. 13 (n) Apt. 14 (o) Apt. 15 (p) Apt. 16

(q) Apt. 17 (r) Apt. 18

Figure 6: Apartment layouts from the activity recognition dataset
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Table 11: List of activities and the relative frequency of occurrence of each activity

Activity Frequency Activity Frequency
Enter Home 0.0031 Personal Hygiene 0.0545
Eat Lunch 0.0070 Leave Home 0.0026
Cook Dinner 0.0534 Eat Dinner 0.0100
Exercise 0.0002 Cook Lunch 0.0274
Wash Dinner Dishes 0.0127 Relax 0.0191
Read 0.0103 Wash Lunch Dishes 0.0077
Phone 0.0029 Evening Meds 0.0037
Eat Breakfast 0.0101 Watch TV 0.0405
Cook 0.0348 Wash Breakfast Dishes 0.0126
Eat 0.0066 Groom 0.0087
Housekeeping 0.0113 Toilet 0.0434
Wash Dishes 0.0088 Work At Desk 0.0004
Sleep Out Of Bed 0.0034 Work At Table 0.0253
Morning Meds 0.0053 Cook Breakfast 0.0320
Take Medicine 0.0036 Bed Toilet Transition 0.0156
Bathe 0.0175 Work 0.0329
Other Activity 0.2789 Entertain Guests 0.0837
Sleep 0.0407 Work On Computer 0.0498
Dress 0.0194

average recall weighted by the number of instances in the class. Throughout the rest of

this discussion, recall will refer to the unweighted average recall.

Figure 7 shows the accuracy and recall results of the two different fitness functions

for GAFSR averaged over all 306 pairings. In this case we use the full 30 days of labeled

data in both the source and target domain as we are interested only in the relative

performance difference between the two fitness functions. As can be seen in the figure,

including the overall accuracy in the fitness function improves the accuracy with only a

slight drop in the recall. We conducted a student’s t-test and found that the difference

in accuracy is significant (p < 0.05) while the difference in recall scores is not (p = 0.13).
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Figure 7: Comparison of fitness functions for GAFSR. The average accuracy and recall
scores over all 306 source-target pairings are shown. Including the accuracy score in the
fitness function improves accuracy without degrading the average recall.

Baseline Comparisons

We are now ready to compare the three proposed techniques, GAFSR, GrFSR, and

ISFSR, against several other baselines. This comparison is used to meet Objective

1.1. GAFSR and GrFSR use the fitness function specified in Equation 3.4. ISFSR

uses the feature-label co-occurrence meta-features as described in Equation 3.9. The

first baseline, Manual, uses the generalized sensor locations (kitchen, bedroom, etc)

to map sensors from one apartment to another. The second baseline None classifier

treats all sensor events as coming from a single source. Essentially this eliminates the

sensor dimension and only considers the time of day and day of week of the activity.

The Manual technique is the mapping technique currently used by most researchers in

activity recognition [21, 91, 107]. It does not require any labeled data in the target

domain, but it does require the manual definition of sensor locations. On the other

hand, None provides a lower bound on the expected performance. The last baseline we

consider, Self is a classifier trained and tested in the target domain. All of the techniques
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use a näıve Bayes classifier trained on the source domain and tested on the target domain.

We considered other base classification algorithms such as SVMs, Decision Trees and

Nearest Neighbors. However, since the meta-features used in ISFSR are specifically

related to näıve Bayes classification we have found that it gives good results without the

computational overhead of some of the other methods. For comparison purposes, we also

include results for ISFSR when a decision tree has been used as the base classification

method.
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Figure 8: Classification accuracy and recall on the target domain using a single source
domain. Manual and None provide baseline comparisons. Manual is the mapping spec-
ified by a domain expert. None does not apply any mapping at all. GAFSR, GrFSR
and ISFSR are all able to perform as good or better than the Manual technique. The
performance of GAFSR, GrFSR, and ISFSR is ordered by the computational complexity
of each technique, highlighting the benefit of exploring the mapping space at the cost of
increased running times.

The results are shown in Figure 8. A one-way ANOVA is performed and the resulting

p-value is less than .0001. The 95% confidence interval is depicted with the error bars.

All three FSR techniques match or beat the two baselines of Manual and None. As the

amount of time spent exploring or computing a good mapping between the target and

source domains increases the resulting accuracy and recall scores also increases. GAFSR
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achieves the best performance scores but it also requires the most time to run, while

ISFSR uses the fewest number of computations but also has the lowest performance

scores of the three techniques. Note that the performance gap between ISFSR and

GrFSR is much smaller than the gap between GAFSR and GrFSR.

Matching the performance of the Manual mapped technique is a positive result as it

implies that transfer learning can be used to reduce or eliminate the need for a domain

expert to supply a mapping between domains. The FSR mapping is able to outperform

the Manual mapping technique because the manual mapping technique is based solely

upon the location of the sensors. This is effective when the resident in the source

dataset performs activities in the same locations as the resident in the target dataset.

For example, both residents are likely to cook in the kitchen. On the other hand, the

manual mapping technique is likely to fail when the residents perform the same activity

in different locations. For example, the resident in the source dataset might eat in

the living room while the resident in the target dataset might eat in the kitchen. FSR

overcomes this problem by mapping features based on correlation with the activity label.

The meta-features used by ISFSR are specifically derived to optimize the mapping when

a näıve Bayes classifier is used. However, from the performance of ISFSR-DT we see that

the mapping works with other classifiers as well. Exploring other mapping strategies

and heuristics may lead to further improvements for specific types of classifiers.

All of the techniques exhibit relatively low accuracy and recall scores. This is due

to several factors. First, the activity recognition is done in a streaming (un-segmented)

fashion. Second, there is a large number of activity classes many of which are similar

or partially overlapping in nature (ex. Cooking and Cooking Breakfast). Improving the

baseline activity recognition rates is not the focus of this dissertation, but others have
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made significant contributions in this direction [22].

In addition to considering the accuracy and recall scores, we can also look at the ROC

curve which plots the true positive rate vs the false positive rate. We generate the ROC

curve by looking at each class label in a one-vs-all scenario. The instances are sorted by

the probability estimate of the classifier and the true positive and false positive rates for

that class are then calculated. Appendix A shows the ROC curves for each individual

class. Finally, we average the ROC curve over all the classes to obtain the results shown

in Figure 9. The Self classifier has the best ROC curve. The ROC curve for Manual and

ISFSR are both similar with ISFSR not quite matching that of the Manual technique.

GAFSR and GrFSR both have the similar ROC curves but neither one performs as

well as ISFSR, Manual or Self. The swapping of performance results compared to the

previous metrics can be explained from the one-vs-all nature of the ROC curve. This

essentially allows the classifier to assign multiple class labels to a single instance instead

of forcing the classifier to pick a single class label. However, GAFSR and GrFSR do

not take advantage of this since they have been optimized with the accuracy and recall

metrics in mind. Adding a metric such as the Area Under the ROC curve (AUC Score)

to the fitness function may improve the ROC curve performance of GAFSR and GrFSR.

The previously-discussed results are the average of 306 different mappings. Individual

results show both higher and lower performance. One direction of transfer learning

research focuses on how to select the best source dataset. Assuming this problem is

solved then we could select the “best” source dataset for each target dataset. We do not

claim that this contributes to avoid negative transfer, only that if negative transfer can

be predicted and avoided we can improve the results. Figure 10 shows the results of using

the best source dataset with the same mapping techniques discussed earlier. Under this
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Figure 9: FSR ROC curve averaged over all classes. The ISFSR and Manual show
similar performance to one another and do not match the performance of Self. GAFSR
and GrFSR also show similar performance to one another and have the lowest ROC
curves.

scenario, the accuracy scores of the three techniques are nearly equivalent with ISFSR

actually performing the best. The recall scores of the three techniques continue to be

ordered by the computational complexity of the technique. Again all three techniques

are able to outperform the baseline techniques of Manual and None but this time they

even match or beat the performance of Self. A one-way ANOVA is performed and the

resulting p-value is less than .0005. The 95% confidence interval is depicted with the

error bars.

We next compare USFSR against the same baselines. USFSR uses the meta-features

described in Table 9. As can be seen in Figure 11, the USFSR algorithm performs

reasonably well if only the accuracy score is considered. Its performance nearly matches

that of the manual technique. However, when the recall score is considered, USFSR

performance drops significantly. USFSR operates with significantly less information

than the informed transfer learning techniques because it does not have any labeled



92

0

0.1

0.2

0.3

0.4

0.5

0.6

Accuracy Recall

S
co

re

Self
GAFSR
GrFSR
ISFSR

ISFSR-DT
Manual

None

Figure 10: Classification accuracy and recall on the target domain using the best single
source domain. This assumes that the best dataset to transfer from could be identified a
priori. Manual and None provide baseline comparisons. Manual is the mapping specified
by a domain expert. None does not apply any mapping at all. A one-way ANOVA is
performed and the resulting p-value is less than .0005. The 95% confidence interval is
depicted with the error bars.

data in the target domain. In this case, making meaningful mappings between domains

becomes extremely challenging.

Figure 12 shows the results of using the best source dataset with the same mapping

techniques discussed earlier. In this case, USFSR is no better than the None baseline

and neither technique performs as well as the manual mapping.

Ensemble Learning

Next, we consider different techniques which utilize data from multiple source datasets.

These experiments meet Objective 1.2 in showing the effectiveness of FSR to combine

multiple source datasets via ensemble learning. We compare against the following tech-

niques. Self uses a näıve Bayes classifier which has been trained on the full amount of

labeled target data using 3-fold cross-validation. Combined combines all of the source
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Figure 11: Classification accuracy on the target domain using a single source domain.
Manual, and None both provide baseline comparisons. Manual is the mapping specified
by a domain expert. None does not apply any mapping at all. USFSR does not have
enough information to make an effective mapping.

domain data into one big dataset with sensor mappings being manually defined by lo-

cation. A näıve Bayes classifier is trained on all of the source data and then tested

on the target data. The ensemble techniques each train one näıve Bayes classifier per

source dataset and the ensemble is then tested on the target domain. As in the previous

experiments only one day of labeled target data is used by ISFSR to make the mapping.

Figure 13 shows the results using the voting ensemble techniques while Figure 14

shows the results using the stacking ensemble techniques. In neither case do we attempt

to select the best source datasets we simply use all available source dataset.

Again we use the accuracy and unweighted average recall for performance metrics.

The performance of the voting ensembles is mixed. USFSR is still unable to compete

with the techniques which use more information (labeled data or manual mappings).

The ISFSR voting ensembles perform comparably to the combined dataset. The trade-

off is that the combined dataset requires a manually-mapped specification while the
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Figure 12: Classification accuracy on the target domain using the best single source
domain. This assumes that the best dataset to transfer from could be identified a priori.
Manual, and None both provide baseline comparisons. Manual is the mapping specified
by a domain expert. None does not apply any mapping at all.

ISFSR voting ensembles require a small amount of labeled data in the target domain.

Neither ISFSR nor Combined performs as well as a classifier trained and tested only on

labeled target data again indicating that additional domain adaption technique may be

beneficial.

The performance of the stacking ensembles stand out above the rest. Both stacking

ensembles achieve higher performance in terms of the accuracy and recall scores than

the combined dataset or the Self classifier. It does this using only a single day’s worth of

labeled data and no manual mapping is required. The Self approach uses nearly 30 days

of labeled data and is trained and tested on the same dataset (with cross-validation),

while the Combined approach uses no labeled data in the target domain but requires a

manual mapping to be specified.
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Figure 13: Classification accuracy on the target domain using multiple source domains
with a voting ensemble. Self and Combined provide baseline comparisons. Self is the
result when the source and target dataset are the same and uses the all the labeled
target data, while Combined uses the mappings provided by a domain expert to build a
generic classifier. Matching the performance of Combined is a positive result.

Learning Curve

Now, we look at two different types of learning curves. The first one considers how the

accuracy and recall scores change as the amount of labeled data increases. The second

one considers how the accuracy and recall scores change as the number of source datasets

increases.

This first experiment shows the effect of the amount of labeled target data on the

accuracy and recall score of the ISFSR algorithm. As in the previous experiments,

we use the 306 possible pairings of the activity recognition datasets. However, this

time we vary the number of days of labeled target data from 0.25 to 30. We also

include a comparison to a baseline classifier, Self, which uses a näıve Bayes classifier

which has been trained only on the labeled target data and is tested on the remaining

target data. Figure 15 shows the results. Clearly, adding more labeled target data is

initially beneficial. However, for ISFSR, the increase in accuracy begins to level off
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Figure 14: Classification accuracy on the target domain using multiple source domains
with stacking ensembles. Self and Combined provide baseline comparisons. Self is the
result when the source and target dataset are the same and uses the all the labeled target
data, while Combined uses the mappings provided by a domain expert to build a generic
classifier. The performance of ISFSR-Bayes and ISFSR-Tree both manage to beat these
baselines representing a considerable gain for the transfer learning techniques.

after approximately ten days of labeled target data. The increase in recall appears to

peek between five and ten days of labeled target data after which point the recall score

declines slightly. This may indicate that having too much labeled data causes ISFSR

to over-fit the data. Comparing ISFSR against the baseline Self we see that initially

ISFSR is able to outperform the baseline. As the amount of labeled data exceeds one

day though, Self begins to outperform ISFSR.

The second experiment shows the effect of changing the number of datasets used in

the ensemble learning. Figure 16 shows the learning curve for each ensemble technique

as the number of source datasets increases. For USFSR-Summation, ISFSR-Summation,

ISFSR-Bayes, and ISFSR-Tree, the performance increases with an increasing number of

datasets. Most of the improvement is achieved within the first seven datasets, after

which performance improvement tapers off. For USFSR-Majority and ISFSR-Majority,
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Figure 15: ISFSR and Self accuracy and recall scores as the amount of labeled target
data increases. Accuracy continues to show improvement with the increase of labeled
target data while the recall score peeks at five and ten days of labeled data in the target
domain.

the accuracy performance improves with an increasing number of datasets, but the

recall performance remains almost constant regardless of the number of datasets. This

illustrates the fact that important distinguishing information is being discarded by the

majority voting scheme.

5.1.2 Document Classification

Objective 1.3 seeks to show the generalizability of FSR to other domains. In this section

we apply FSR to several scenarios involving document classification. We test ISFSR on

the newsgroups dataset [57]. The newsgroups dataset is a collection of approximately

20,000 documents across 20 different topics. The topics are organized in a hierarchical

manner. Following the processing steps used by Dai et al. [25] and Pan et al. [73], the

source and target datasets are created by first selecting two top-level categories as the

class labels. The documents are then split by sub-categories to form a source dataset
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Figure 16: Learning curve for the ensemble classifiers where the number of source clas-
sifiers ranges from 2 to 16. Each ensemble technique quickly improves with more source
classifiers but the performance improvements then begin to level off.

and a target dataset. The resulting datasets are shown in Table 12. We also show basic

statistics about the datasets in Table 13.

Each pair of datasets is processed separately so that the alignment and number of

attributes is the same for datasets in the same row but different for datasets in different

rows (i.e. the feature-space of Ds sci. vs. talk is the same as the feature space of Dt sci.

vs. talk but the feature-space of Ds rec. vs. sci. is not the same as the feature space

of Dt sci. vs. talk. Additionally, the source distribution is different from the target

distribution for all datasets because the documents come from different sub-categories;

however, they are still related because they come from the same top-level categories.

As in the work of Dai et al. [25] and Pan et al. [73] we train ISFSR on Ds and then

test ISFSR on Dt for each row in the table. This is not a heterogeneous transfer learning

problem, but rather a domain adaptation problem. However, we also take the transfer

learning problem one step further and test each Dt on classifiers trained on the Ds of

the other rows. This creates a heterogeneous transfer learning problem for document
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Table 12: Breakdown of the 20 newsgroups dataset for transfer learning

Dataset Ds Dt

comp vs. sci comp.graphics comp.sys.ibm.pc.hardware
comp.os.ms.windows.misc comp.sys.mac.hardware

sci.crypt comp.windows.x
sci.electronics sci.med

sce.space
comp vs. talk comp.graphics comp.os.ms.windows.misc

comp.sys.mac.hardware comp.sys.ibm.pc.hardware
comp.windows.x talk.politics.guns

talk.politics.mideast talk.politics.misc
talk.religion.misc

rec vs. sci rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey

sci.med sci.crypt
sci.space sci.electronics

rec vs. talk rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

sci vs. talk sci.electronics sci.crypt
sci.med sci.space

talk.politics.misc talk.politics.guns
talk.religion.misc talk.politics.mideast

classification. In addition to P (Xs) 6= P (Xt) because the source and target data comes

from different sub-domains, now χs 6= χt because the source and target data come from

different top-level domains. In this new problem we no longer know which words are the

same in the different domains (i.e. “bit” may be the ith word in the source domain but

we have no idea which index corresponds to “bit” in the target domain or even if the

word “bit” is found in the target domain, let alone if it has the same semantic meaning

in both domains. This also means that although technically Ys = Yt because we use

(0,1) for the class labels, semantically Ys 6= Yt because the source task may be to classify

documents as either belonging to recreation or science while the target task may be to
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Table 13: Summary statistics of the newsgroups datasets

Id # Features # + Instances # - Instances # Meta-Features
Ds(cs) 9892 1958 1972 19784
Dt(cs) 9892 2923 1977 19784
Ds(ct) 10624 2914 1568 21248
Dt(ct) 10624 1967 1685 21248
Ds(rs) 14974 1984 1977 29948
Dt(rs) 14974 1993 1972 29948
Ds(rt) 15253 1984 1685 30506
Dt(rt) 15253 1993 1568 30506
Ds(st) 15327 1971 1403 30654
Dt(st) 15327 1978 1850 30654

classify documents as belonging either to talk or computers.

Domain Adaptation

For the Newsgroups dataset, we compare the ISFSR technique using 10% of the labeled

data in Dt to perform the mapping against several baselines. Self uses a näıve Bayes

classifier which has been trained and tested on the target dataset using 10-fold cross-

validation. None uses a näıve Bayes classifier which has been trained on the source

dataset and tested on the target dataset. The source and target feature spaces are

adjusted to have the same number of features by adding zero-valued features as necessary.

No attempt is made to adjust for the domain differences. TCA is a domain adaptation

technique which projects both the source and the target domain onto a shared subspace

of reduced dimensionality [73]. We compare our results against the unsupervised TCA

using a linear kernel with 30 dimensions. We also compare against the semi-supervised

TCA (SSTCA) using a linear kernel with 30 dimensions. Since the class distribution

is balanced in these datasets we report only the accuracy scores. Figure 17 shows the

results. Error bars are shown at the 95% confidence level.
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Figure 17: Newsgroups dataset results with P (Xs) 6= P (Xt). ISFSR is not the best
choice in this situation but is usually better than not performing any type of transfer.
Self is the result when the source and target dataset are the same (and uses all the
labeled target data).

From these results it is clear the ISFSR is not the best technique for transfer learning

when χs = χt and P (Xs) 6= P (Xt). This is not surprising since ISFSR is designed mainly

to handle different feature spaces. The performance results of ISFSR are low on the first

three datasets (cs, ct, and rs), with ISFSR only slightly outperforming None on cs and

rs, and actually performing worse than None on ct. TCA and SSTCA also struggles to

improve performance on the cs dataset but do well on the ct and rs datasets. These

results show the importance of further research into detecting and avoiding negative

transfer. ISFSR performs much better on the last two datasets (rt and st), improving

the classification accuracy by approximately 10% as compared to None. The accuracy

of ISFSR is still lower than TCA, but the gap is much narrower. On two of the datasets

(cs and rt) ISFSR even performs better than SSTCA. Note that ISFSR is a technique

which has been designed to specifically handle the case when χs 6= χt, while TCA is

designed to handle the case when P (Xs) 6= P (Xt). In this experiment, χs = χt but
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P (Xs) 6= P (Xt). When viewed in this light, the results of the two algorithms are not

surprising. Of interest is that ISFSR is able to show some improvement in many cases

even when χs = χt and P (Xs) 6= P (Xt).

The second interesting thing to note is that when ISFSR performs well, TCA tends

to do worse (compare ct and rs to rt and st). One possible explanation for this might

be that the differences between P (Xs) and P (Xt) are greater in rt and st. As the

differences increase, the problem begins to more closely resemble the case when χs 6= χt.

The negative correlation between ISFSR and TCA is not manifested on the results for

the cs dataset. The reason this occurs is unclear but it may be related to the fact that

the performance of Self is lowest for the cs dataset, possibly indicating that the dataset

is harder to learn than the other datasets. Further research is needed to investigate

these ideas.

Heterogeneous Feature-Spaces
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Figure 18: Newsgroups dataset results with heterogeneous transfer and no translation
oracle. ISFSR clearly outperforms the baseline technique where features-spaces are not
aligned.
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The second experiment we conduct using the newsgroups dataset involves transfer-

ring knowledge between datasets where χs 6= χt. This is a significant step away from

the previous experiment where, χs = χt and P (Xs) 6= P (Xt). It is also the first time

this type of problem has been considered for document classification when no transla-

tion oracle is available. Since this is the first time such a problem has been tried, we

cannot directly compare against any previous results. We report the results for each

target dataset, averaged over all five source datasets, and the best results for each tar-

get dataset. In this experiment, the only baseline we have to compare against is the

performance when no transfer is performed (None). This is similar to applying a ran-

dom mapping between the feature spaces. The results are shown in Figure 18. Not

surprisingly, the accuracy of None is close to random guessing, ranging from 50-60%.

The exciting result is that the accuracy of ISFSR is much better, achieving as high as

73% accuracy when averaged over the source datasets and 76% accuracy for the best

dataset. A two-tailed paired t-test gives a p-value of .00005 over all the datasets, and

p-values between .01 and .002 for the individual datasets.

We emphasize that this transfer problem reflects differences along three of the four

possible transfer variables. Specifically, χs 6= χt, P (Xs) 6= P (Xt), and ft() 6= fs().

Additionally, although Ys = Yt, as we are using 0 and 1 for class labels, semantically the

0 and 1 represent different labels in the different datasets. We have successfully trained a

classifier to recognize documents as belonging to the categories of “recreation” or “talk”

and used the learned model to classify documents as belonging to either “computers” or

“science”.
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Figure 19: Newsgroups dataset results comparing different aggregation techniques. The
process of aggregating target features which mapped to the same source feature has little
effect on the overall performance of ISFSR.

Aggregation Results

The third experiment we conduct, using the newsgroups dataset, shows the effect of

choosing a particular aggregation method for mapping multiple dimensions in the target

domain to a single dimension in the source domain. Specifically, we compare ISFSR using

the following aggregation techniques: Maximum, Minimum (greater than 0), Average

and Total. The results are shown in Figure 19. Surprisingly, the aggregation method

has little effect on the overall accuracy of the technique as applied to the newsgroups

datasets. Running an ANOVA on the results yields a p-value of .95 indicating that the

results are not statistically significant.

The reason the aggregation technique has little effect on the accuracy results is not

clear. However, we can rule out the explanation that there just is not much aggregation

to be done. A quick look at the generated mappings shows that hundreds of attributes

in the target domain map to tens of attributes in the source domain and many more

attributes in the source domain have two or more attributes mapping to them from the
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target domain. Thus there is indeed a large amount of aggregation occurring. We can

think of a few other possible explanations, the features being aggregating may be of

little importance in defining class boundaries or the features being aggregated may have

similar enough values that any of the aggregation techniques work equally well. We plan

to investigate these ideas in future work.

Ensemble Learning
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Figure 20: Newsgroups dataset results comparing ensemble techniques. No single en-
semble technique is clearly better than any other ensemble technique. However, all of the
ensemble techniques perform better than when only a singe source domain is employed.

We also evaluate the performance of the ELFSR techniques on the newsgroups

datasets. For each newsgroup target dataset Dt we use all the other newsgroup datasets

as source datasets. This gives us a total of nine source datasets for each target dataset.

We consider both voting ensembles and stacking ensembles. The results are shown in

Figure 20. Bayes is a stacking ensemble using Naive Bayes as the ensemble classifier,

Tree is a stacking ensemble using a Decision Tree as the ensemble classifier, Maj is a

majority voting ensemble, Sum is a sum of probabilities voting ensemble, and ISFSR is
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Figure 21: Learning curve for the ensemble classifiers. As more source classifiers are
included the accuracy continues to improve.

the average result without using an ensemble learner. All of the ensemble techniques

evaluated show better results than the basic ISFSR technique. Applying a one-way

ANOVA to the results yields a p-value of .003 indicating that the difference in means

are statistically significant. Unlike in the activity recognition domain, here we do not

see as much difference between the ensemble techniques themselves as each technique

performs similarly to the others. The Naive Bayes stacking ensemble has the highest

accuracy scores but the other techniques are within a few percentage points. As can be

seen by the confidence intervals, the means for each technique show significant overlap

with each other except for the baseline technique.

In addition to comparing the performance of ISFSR and ELFSR against other tech-

niques we also consider how the number of source datasets affects the performance

achieved by the techniques.

We generate learning curves for the newsgroups dataset as shown in Figure 21. As

the number of source classifiers increase, so does the overall accuracy. This performance

increase occurs most rapidly with the inclusion of the first few classifiers and then slowly
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tapers off as more source classifiers are added.

One interesting pattern that emerges in majority voting learning curve is the effect

of odd and even number of source datasets. Each time the number of source datasets

increases from odd to even there is essentially no improvement. However, each time the

number of source datasets increases from even to odd there is a corresponding jump in

the resulting accuracy. This makes sense intuitively because with an even number of

sources, ties are broken arbitrarily (leading to an average accuracy of 50% for the tied

cases). When a new classifier is added it acts as the tie-breaking vote. Since the accuracy

of the classifier is greater than 50% we would expect the performance to increase, which

it does.

We have looked at experimental results addressing Objectives 1.1 - 1.3. The FSR

techniques are shown to perform well against the manual mapping technique. In many

cases, they also perform better than a classifier trained and tested solely on the target

dataset. Furthermore, FSR is shown to generalize to other domains including document

classification.

5.2 Multi-view Experimental Results

The next set of experimental results focus on the new sensing platform problem and

support Objectives 1.4 - 1.7. We evaluate our proposed multi-view approaches to learning

from heterogeneous devices using two activity recognition datasets by varying amounts

of labeled training data (graphs are on a log scale). Both datasets collect data from

multiple, heterogeneous sensor classes and both include data collected from multiple

participants. To avoid issues related to changing data distributions we evaluate the data
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from each participant separately. In every experiment we report activity accuracy results

using 10-fold cross validation and averaging over the entire collection of participants. We

also report the unweighted average recall.

In the Opportunity dataset [94], 4 participants performed 5 rounds of scripted ac-

tivities to check object placements, make/drink coffee, make a sandwich, and relax in a

chair. They also performed 1 round of drill activities such as open/close the refrigerator,

clean the table, and open/close a drawer. The twelve 3-axis wearable accelerometers rep-

resent one view and the seven wearable inertial measurement units represent the second

view. We use the same features as Sagha et al. [97] which consist of the raw sensor

values sampled every 500ms averaged over a 5-second window. This is the continuous

feature representation described in Section 2.2.2. The dataset is labeled for locomotion

activities: Stand, Walk, Sit and Lie.

In the CASAS PUCK dataset, 25 participants performed three trials of six activities

in a smart space that is equipped with ambient motion and door sensors, object vibration

sensors and two on-body 6-axis accelerometers [98]. The six activities to be detected are

sweeping, medication, cooking, watering plants, hand washing, and washing countertops.

The location of the motion sensors are shown in Figure 22 and 23. Object vibration

sensors have been placed on objects including the broom, dustpan, duster, water pitcher,

bowl of noodles, measuring cup, glass, fork, watering can, hand soap dispenser, dish soap

dispenser, pill dispenser, medicine bottles and other items. The object vibration sensors

prior to being attached to objects are shown in Figure 23. The on-body accelerometers

are attached to the participants dominant arm and waist as shown in Figure 24.

In order to provide consistency we employ the same features as in the Opportunity

dataset, namely the raw sensor values sampled every 500ms and averaged over a 5-second
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Figure 22: Ambient motion sensor placement. The small square ’MXXX’ labels are
narrow-view motion sensors. The larger circles represent the areas seen by the wide-
view motion sensors.

window. The labels are the six activities: sweeping, medication, cooking, watering

plants, hand washing, and washing countertops.

All of the proposed algorithms are compatible with virtually any base classification

technique. In these experiments a decision tree classifier is used as overall it performed

the best for the two datasets. Other algorithms such as Logistic Regression, k Nearest

Neighbors, and Support Vector Machines were tried. However, no single algorithm

consistently outperformed the others and in some cases the increased run time made the



110

(a) Ambient motion sensors (b) Object vibration sensors

Figure 23: Sensors in the apartment

(a) Arm accelerometer (b) Waist accelerometer

Figure 24: Placement of on-body accelerometers

approach impractical for the evaluation.

5.2.1 Two Views

For these experiments, the ambient sensors represent the first view and the accelerome-

ters represent the second view. The results focus on the accuracy and recall scores of the

target view but we include the accuracy and recall scores of the source view in Appendix

B. In the first experiment, we consider the accuracy of the classifier for the target view

(On-body accelerometers view) as the amount of labeled data varies. This shows us how

the multi-view learning algorithms perform when both the source and target views have
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Figure 25: Two view informed MVTL classification accuracy vs. labeled data. Co-EM
shows a small improvement over the baseline None on the CASAS dataset. Neither
Co-Training nor Co-EM shows improvement over the baseline None on the Opportunity
dataset.

a limited amount of labeled data. This supports Objective 1.4 In our personal activity

recognition ecosystem example, this tests the scenario of bringing two different activity

recognition systems online at the same time. By allowing the systems to collaborate

we hope to improve the overall accuracy. We consider three different baselines against

which we can compare our results. The first baseline, Oracle, trains a classifier on the

unlabeled data using a perfect oracle to label the unlabeled data. The second baseline,

None, trains a classifier using only the labeled data available in the target view. The

third baseline, Random, randomly assigns a class label weighted by the observed class

distribution. For the CASAS dataset, we choose n = 10 for the Co-Training algorithm

and fix the number of iterations of Co-EM to 10. For the Opportunity dataset, we choose

n = 1000 for the Co-Training algorithm and fix the number of iterations of Co-EM to

3. Other values of n were considered but the resulting accuracy showed little variation.

The results on the CASAS dataset are shown in Figures 25 and 26. A One-way
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Figure 26: Two view informed MVTL average recall vs labeled data. Co-Training
matches or is slightly below the None baseline on the Opportunity dataset. Neither
technique outperforms None on the CASAS dataset.

ANOVA test indicates that the differences between mean accuracy values for the Co-

EM, Co-Training, and None techniques are significant (p < 0.05) on all amounts of

labeled training data except when the amount of labeled training data is 0.0005 of the

dataset. The Co-EM technique consistently improves upon the baseline None with the

margin of improvement decreasing as the amount of labeled data increases. This provides

evidence that applying Co-EM can improve the accuracy of the system when bringing

two new activity recognition systems online simultaneously. The Co-Training technique

does not follow the expected upward learning curve trajectory. It also fails to improve

upon the baseline techniques. One possible explanation for this is that the two views are

not conditionally independent given the label, which causes the Co-Training algorithm

to fail in some situations.

Figure 25 and Figure 26 also show the results for the Opportunity dataset. A One-

way ANOVA test indicates that the differences between mean accuracy values for the Co-

EM, Co-Training, and None techniques are significant (p < 0.05) on amounts of labeled
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training data between 0.002 and 0.2 of the dataset. In this situation, the collaboration

between new systems does not boost performance and in fact it has a negative effect.

The CoEM algorithm fails to match the performance of the None baseline as does the

Co-Training algorithm. We suspect this is due to the fact that the two views not only

violate the conditional independence assumption but are likely to be highly correlated

since both views use similarly-placed wearable sensors.

Next, we repeat the first experiment using the uninformed Multi-view techniques.

The labeled data is only used to train the classifier in the source view. This tests the

situation where one activity recognition system has been brought online and provided

a limited amount of labeled training data. Shortly thereafter, a second activity recog-

nition system is also brought online but no labeled training data is provided. For the

Manifold Alignment algorithm we choose d to be the minimum number of dimensions in

the source and target views, maximizing the information retained by the dimensionality

reduction step. The results on the CASAS dataset are shown in Figure 27 and 28. A

One-way ANOVA test indicates that the differences between the means of the three tech-

niques are significant (p < 0.05) for all amounts of labeled training data. The Manifold

Alignment technique has no clear trend with the accuracy remaining between 40%-50%.

The Teacher-Learner technique, on the other hand, shows clear improvement as the

amount of labeled data used by the teacher increases. The technique even approaches

the accuracy achieved by the ideal Oracle technique.

Figure 27 and Figure 28 also show the results of the Uninformed Multi-view tech-

niques on the Opportunity dataset. The results are similar to the results seen on the

CASAS dataset and a One-way ANOVA test confirms the difference between techniques
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Figure 27: Two view uninformed MVTL classification accuracy vs. labeled data. The
teacher-learner algorithm shows steady improvement as the amount of labeled data in
the source view increases. It also outperforms Manifold Alignment.

are significant (p < 0.05). The Manifold Alignment technique does not perform par-

ticularly well although in this case it does show improvement as the amount of labeled

data increases. The poor performance of the technique on both datasets is likely due to

the invalid assumption that the data from both views can be projected onto a shared

manifold in a lower-dimensional subspace. The Teacher-Learner technique again shows

clear improvement as the amount of labeled data available to the teacher increases and

approaches the ideal accuracy achieved by the Oracle technique.

In contrast to the previous experiments, we now want to look at the performance

of these algorithms when a well-trained activity recognition system is in place and a

second system is brought online with only a limited amount of available training data.

This supports Objective 1.5. We assume that the source view has a significant amount

of labeled training data (i.e. 50% of the dataset) and we vary the amount of labels in

the target view. Figure 29 and Figure 30 show the results. In this case, we get a much

different picture than in the previous experiments. Co-EM and Teacher-Learner, now
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Figure 28: Two view uninformed MVTL average recall vs. labeled data. The teacher-
learner algorithm shows steady improvement as the amount of labeled data in the source
view increases. Teacher-learner also outperforms Manifold Alignment, which does little
better than Random.

come much closer to matching the ideal Oracle technique. They both are significantly

better (p < 0.05) than the None baseline technique for both the accuracy and the recall

metrics. Additionally, Co-Training also performs significantly better (p < 0.05) than

the baseline None technique as indicated by a paired student’s t-test.

We also evaluate our collaboration method, Personalized ECOsystem (PECO), of

combining the Teacher-Learner technique with an informed multi-view technique. To

do this, we let the teacher bootstrap the initial labeled data for use by Co-Training or

Co-EM algorithms. The teacher is initially trained on 50% of the data. The teacher then

provides labels for a varying amount of data that the learner can use for training. In

this situation, a well-trained activity recognition system is already in place and we now

bring online a second activity recognitions system without providing any labeled training

data. The PECO accuracy results are shown in Figure 29 and the recall results are
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Figure 29: Two view well-trained/PECO accuracy results. CASAS accuracy with 50%
labeled source data. Both the co-EM and the teacher-learner algorithms show substantial
improvement over the None baseline using ground truth labels or the bootstrapped labels
(PECO).

shown in Figure 30. Co-EM with bootstrapping performs better than using the Teacher-

Learner technique alone, while Co-Training with bootstrapping does not improve upon

the Teacher-Learner method. Interestingly, the results are almost identical to the results

of the previous experiment. This indicates that our proposed label bootstrapping method

yields performance that is on par with the performance when ground truth labels are

available.

These results indicate that we can create a personalized activity-aware ecosystem

capable of training and adapting to new sensor classes without requiring human inter-

vention. A single trained activity recognition system is sufficient to train subsequent

activity recognition systems without any additional labeled data. This is valuable for

applications in which activity recognition needs to smoothly transition between data

sources such as environment sensors, wearable or phone sensors, video data, or objects

sensors, without the need for expert guidance and without the requirement that labeled
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Figure 30: Two view well-trained/PECO recall results. CASAS recall with 50% labeled
source data. Both the co-EM and the teacher-learner algorithms show substantial im-
provement over the None baseline using ground truth labels or the bootstrapped labels
(PECO).

data be provided for the new view.

5.2.2 Three Views

Having shown the effectiveness of MVTL when two views (or sensing platforms) are

present, we now turn our attention to the effect of adding an additional view into the

mix. For these experiments we only consider the CASAS dataset since the Opportunity

dataset did not have additional views of sufficient quality. We use the ambient motion

sensors as one view, the object sensors as a second view and the on-body accelerometers

as the third view. We still use a decision tree classifier and the same features as before.

The accuracy and recall scores for each view have been empirically measured using all of

the labeled data and applying 10-fold cross-validation. The results are shown in Table

14. Each view differs in its ability to correctly classify the activities being performed.
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Table 14: Accuracy and recall scores for each view with all of the labeled data

ID View Accuracy Recall
1 Object Shake Sensors 0.9095 0.8362
2 Ambient Motion Sensors 0.7851 0.6408
3 On-body Accelerometers 0.7250 0.5239

The individual performance of the views affects the overall performance of the multi-

view learning algorithms but we cannot explore all possible combinations of views and

orderings in this chapter. Instead, we focus on particular examples and discuss how the

choices we make affect the results of the algorithms. Each experiment will look at the

accuracy and recall score of view 2, the Ambient Motion Sensor view. By focusing on

the results of a single view we can make comparisons across different experiments. The

results for the source views are included in Appendix B.

In the first experiment, we only use two views. This provides additional support

for Objectives 1.4 and 1.5 but will primarily be used for future comparisons when a

third view is also considered (Objective 1.6). We report the accuracy and recall of the

ambient motion sensor view (View 2) under three scenarios which we will refer to as

Equal, Trained and PECO.

The Equal scenario uses an equal amount of labeled training data in both views which

we vary from 0.05% to 50% of the total training data. The Trained scenario also uses

0.05% to 50% of the total training data as labeled data, but it also uses an additional

40% of the training data in the object vibration sensor view (View 1) as labeled data.

The PECO scenario uses 40% of the training data in the object sensor view as labeled

data. Labels for 0.05% to 50% of the total training data for the other view are then

bootstrapped using a classifier trained on the object sensor view.

The Equal scenario corresponds to a situation where multiple untrained activity
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recognition systems are being brought online simultaneously with a limited amount of

labeled training data. The Trained scenario corresponds to a situation in which an

existing trained activity recognition systems is already in place and now an additional

activity recognition system is being brought online with a limited amount of labeled

training data. The PECO scenario corresponds to a situation in which an existing

trained activity recognition systems is already in place and now an additional activity

recognition system is being brought online without any labeled training data. All of

the training labels for the new activity recognition systems are provided by the existing

activity recognition system. This uses our PECO algorithm. In the several of the figures

we denote the well-trained views with an * and we denote the bootstrapped views with

a +.

Note that these experimental results are different from the previous experiments. In

the previous experiments the ambient motion sensors view functioned as the well-trained

source (teacher) view, while in these experiments it will function as the untrained target

(learner) view.

We use the same three baselines as before against which we can compare our results.

In the PECO scenario, None uses the bootstrapped class labels. We keep n = 10 for the

Co-Training algorithm and fix the number of iterations of Co-EM to 10.

The accuracy results are shown in Figure 31 and the average recall results are shown

in Figure 32. The results for all three scenarios are similar to the results we saw in

the previous section. When both views have equal amounts of labeled training data,

the Co-EM and Teacher-Learner algorithms are similar to the baseline comparison of

None. Both the accuracy and the unweighted average recall score is slightly higher than

the None baseline for most levels of labeled training data. Co-Training, on the other
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Figure 31: Classification accuracy vs. labeled data using View 1 and View 2. In the
Equal scenario both Co-EM and the teacher-learner algorithm show a slight improvement
over the None baseline. In the Trained and PECO scenarios Co-EM and teacher-learner
both show substantial improvement over the None baseline.

hand, has a much lower accuracy compared to the None baseline while the recall scores

are similar to the other techniques. As the amount of labeled data increases all three

algorithms come closer to matching the performance of the ideal Oracle results. These

results show limited promise for using multi-view learning when both views have similar

amounts of labeled training data.

When the object vibration sensor view (View 1) has been trained using an additional

40% of the training data as labeled data, the Co-EM and Teacher-Learner algorithms

both outperform the None baseline in terms of accuracy and recall scores. The Co-

Training algorithm also outperforms the None baseline in terms of recall scores but does

not perform as well as the None baseline in terms of accuracy scores. This indicates

that the Co-Training algorithm is able to correctly identify larger proportions of each

class than the None technique but does not have as high of an accuracy score due to the

imbalanced nature of the classes.
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Figure 32: Average recall vs labeled data using View 1 and View 2. In the Equal scenario
both Co-EM and the teacher-learner algorithm show a slight improvement over the None
baseline. In the Trained and PECO scenarios all three techniques show substantial
improvement over the None baseline.

When labels have been bootstrapped using a classifier trained on the object vibration

sensor view (View 1) with 40% of the training data, the results are very similar to

the previous results using ground truth labels. Only as the amount of bootstrapped

data reaches 20% or more of the data do the differences even become noticeable. This

is promising for our PECO algorithm because it indicates that bootstrapping a small

number of labeled data points is as good as using the ground truth labels.

We now repeat the previous experiments but use the on-body accelerometer view

(View 3) in place of the object vibration sensor view (View 1). In both of the previous

experiments, the teacher view had a higher potential accuracy than the learner view

but in this case the learner view has a higher potential accuracy than the teacher view.

Figure 33 shows the accuracy results and Figure 34 shows the recall results.

Now, when both views have equal amounts of labeled training data, all three tech-

niques (Co-Training, Co-EM and Teacher-Learner) perform worse than the baseline
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Figure 33: Classification accuracy vs. labeled data using View 3 and View 2. In the
Equal scenario no technique improves upon the None baseline. In the Trained and
PECO scenarios Co-EM and teacher-learner both show improvement over the None
baseline until about 5% of the data is labeled.

None technique. When the on-body accelerometer view (View 3) is trained with an 40%

of the training data, the Co-EM and Teacher-Learner technique both out perform the

None baseline until about 2% of the training data is labeled. The Co-Training technique

exhibits similar performance with the unweighted average recall metric but the accuracy

metric is again well below the None baseline. Finally, using bootstrapped labels appears

to be an effective strategy and for small amount of labeled data is nearly as good as

using the ground truth labels.

From the previous experiments it is obvious that the baseline accuracy of the views

affects the performance of the Co-Training, Co-EM and Teacher-Learner algorithm.

Figure 35 and Figure 36 demonstrate this explicitly by comparing the average deference

in accuracy and recall scores, respectively, between the previous two experiments for

each technique.

We now want to look at the affect on the performance of these algorithms as an
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Figure 34: Average recall vs labeled data using View 3 and View 2. In the Equal scenario
no technique improves upon the None baseline. In the Trained and PECO scenarios Co-
EM and teacher-learner both show improvement over the None baseline until about 2%
of the data is labeled.

additional view is introduced. Introducing a third view has both potential benefits

as well as drawbacks. For example, a third view may help increase the accuracy by

introducing additional diversity. On the other hand, introducing a third view may also

be detrimental if the diversity leads to less accurate classification. One can imagine an

effect similar to the “telephone” game played by children in which a message is slowly

changed and degraded each time it is passed to the next person. To explore these effects

we consider the following scenarios in relation to our original scenario using View 1 and

View 2. A * represents views which have been trained with the additional 40% of labeled

data. A + represents views whose labels have been bootstrapped. (x,y) represents the

ensemble of view x and view y.

1. Equal-1,2,3. This is the same as the Equal scenario but View 3 is also included.

2. Trained-1*,2,3. This is the same as the Trained scenario but View 3 is also in-

cluded.
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Figure 35: Effects on accuracy of changing the teacher. When a more accurate teacher
(i.e. View 1) is used, the accuracy on view 2 increases.

3. PECO-1*,2+,3+. This is the same as the PECO scenario but View 3 is also

included.

4. Trained-1*,2,3*. This is the same as Trained but View 3 is also included and uses

the additional 40% of labeled data. Only the object vibration sensor view (View

1) acts as the teacher.

5. PECO-1*,2+,3*. This is the same as PECO but View 3 is also included and uses

the additional 40% of labeled data. Only the object vibration sensor view (View

1) bootstraps the labels for View 2.

6. Trained-(1*,3*),2. This is the same as Trained but View 1 and View 3 are combined

into an ensemble classifier. Both View 1 and View 3 use the additional 40% of

labeled data.
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Figure 36: Effects on recall of changing the teacher. When a more accurate teacher (i.e.
View 1) is used, the recall on view 2 increases.

7. PECO-(1*,3*),2+. This is the same as PECO but but View 1 and View 3 are

combined into an ensemble classifier. Both View 1 and View 3 use the additional

40% of labeled data and the ensemble is used to bootstrap labels for View 2.

By comparing the performance results of each scenario against the performance when

only two views are used we can better see the effect that introducing the third view

has. This supports Objective 1.6. Figure 37 shows the difference between the accuracy

of the original scenario using only View 1 and View 2 and the accuracy of the new

scenarios using all three views for each algorithm averaged over the different amounts

of labeled data available for training. Positive values indicate that the accuracy of the

new scenario is higher than the accuracy of the original scenario. Similarly, Figure 38

shows the difference between the unweighted average recall of the original scenario using

only View 1 and View 2 and the unweighted average recall of the new scenarios using
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Figure 37: Effects on accuracy of adding an additional view (view 3). Overall, view 3 is
less accurate so this has the effect of lowering the accuracy on view 2.

all three views for each algorithm. The Teacher-Learner algorithm is unaffected by the

introduction of a third view except in the scenarios in which the third view is combined

with the first view using an ensemble method. The Co-Training and Co-EM algorithms,

on the other hand, both have lower accuracy and recall scores than the original scenario.

The exceptions are the accuracy scores for a few of the Co-Training algorithms but even

these show an improvement of less than 1%. The Co-Training algorithm is most affected

by the introduction of a third untrained view, while the Co-EM and Teacher-Learner

algorithms are most affected by the introduction of a third well-trained view used in an

ensemble.

We repeat the same experiments but with the role of the first and third views re-

versed. Figure 37 shows the difference between the accuracy of the original scenario

using only View 3 and View 2 and the accuracy of the new scenarios using all three
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Figure 38: Effects on recall of adding an additional view (view 3). Overall, view 3 is less
accurate so this has the effect of lowering the recall on view 2.

views for each algorithm averaged over the different amounts of labeled data available

for training. Similarly, Figure 38 shows the difference between the unweighted average

recall of the original scenario using only View 3 and View 2 and the unweighted average

recall of the new scenarios using all three views for each algorithm. In contrast to the

previous experiment, this experiment shows the introduction of a third view as having

a beneficial affect on the accuracy and recall scores. As before, the Teacher-Learner

algorithm is unaffected by the introduction of a third view except in the scenarios in

which the third view is combined with the first view using an ensemble method. The

Co-Training and Co-EM algorithms both show considerable improvement when the third

view is well trained. When the third view is not previously trained, it has little effect

on the resulting accuracy and recall scores.



128

-0.02

0

0.02

0.04

0.06

0.08

0.1

E
qu
al-3,2,1

T
rain

ed
-3*,2,1

P
E
C
O
-3*,2+

,1+
T
rain

ed
-3*,2,1*

P
E
C
O
-3*,2+

,1*
T
rain

ed
-(3*,1*),2

P
E
C
O
-(3*,1*),2+

A
cc
u
ra
cy

CoTrain
CoEM
Teach

Figure 39: Effects on accuracy of adding an additional view (view 1). Overall, view 1 is
more accurate so this has the effect of increasing the accuracy on view 2.

When considered as a whole these results highlight some important differences be-

tween the proposed algorithms. Co-Training treats all views equally. This makes the

algorithm more stable when the order of the views is changed but also limits the ac-

curacy of the approach by failing to give preference to views which are more accurate.

Co-Training is also able to make good use of having multiple well-trained views. The

Teacher-Learner algorithm is highly dependent on the selection of a good teacher and

does not make any use of having additional well-trained views unless those views are

used in an ensemble. The Co-EM algorithm is somewhere in between. The order of the

views still affects the accuracy of the algorithm (think “telephone” effect) but not as

strongly as the Teacher-Learner algorithm is affected. Ordering views by their achievable

accuracy scores seems to yield the best results.

From these results we can draw a few general guidelines. First, when considering
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Figure 40: Effects on recall of adding an additional view (view 1). Overall, view 1 is
more accurate so this has the effect of increasing the recall on view 2.

which system or systems to use as the teacher, if the accuracy of the systems are known,

the most accurate systems should play the role of teacher. However, suppose these

collaborative learning techniques have been applied across several generations of smart

devices. At this point we may no longer know the exact accuracy of any given system.

If the accuracy of the systems are unknown, combining the systems using an ensemble

method may help mitigate the risk of selecting an inaccurate system to play the role of

teacher but may also result in lower accuracy scores than might otherwise be achieved.

Second, bootstrapping a small number of labels appears to be as effective as using ground

truth labels. A single trained activity recognition system is sufficient to train subsequent

activity recognition systems without any additional labeled data. This is valuable for

applications in which activity recognition needs to smoothly transition between data

sources such as environment sensors, wearable or phone sensors, video data, or objects
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sensors, without the need for expert guidance and without the requirement that labeled

data be provided for the new view. However, as the amount of bootstrapped data

increases the effectiveness of the technique decreases.

5.2.3 Accuracy Bounds

Finally, we consider the achieved accuracy of the learner in relation to the expected,

upper and lower bounds in support of Objective 1.7. For the expected bounds, we

consider the z = 1/(k − 1) bound proposed in Equation 4.10, the z-priors bound in

Equation 4.11, the conditional probability bound in Equation 4.12, the average of the

upper and lower bound and the underestimated expected bound of p ∗ q. We evaluate

these bounds using the ten-fold cross-validation technique described earlier. The values

used for computing the bounds, such as the teacher accuracy and the level of agreement

between the teacher and the learner, are taken from the observed performance on the

validation set.

Figure 41 shows the results for each teacher-learner view combination. The upper

and lower bounds do in fact bound the accuracy from above and below. They are not

particularly tight bounds, deviating by as much as 20% from the observed accuracy in

these experiments. The loose bounds are a result of not knowing the true values for q1

and q2 in Equation 4.3 but instead knowing only the value of q.

The simplest estimation p ∗ q of the expected accuracy is also the least accurate.

Including the (1−p)(1−q)z term improves the estimate of the accuracy. The conditional

expected bounds provides a closer estimate to the observed accuracy but still consistently

underestimates the actual accuracy of the learner. Taking the average of the upper and
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Figure 41: Accuracy bounds for the learner. The upper and lower bounds do indeed
bound the actual accuracy. The Conditional estimate, z-priors estimate, z = 1/(k − 1)
estimate and p ∗ q estimate all consistently underestimate the actual accuracy. The
Average of the upper and lower bounds provides the best estimate of the actual accuracy.

lower bound provides the most accurate estimate of the actual learner accuracy.

5.3 Conclusions

In this chapter, we have presented empirical results highlighting the effectiveness of the

proposed algorithms and validating each of the proposed objectives. We have shown

the effectiveness of FSR techniques in solving the new environment problem (Objective

1.1) with average performance improvements of 4% to 6% over the generalized model.

The average performance of FSR techniques does not match the performance of a model

trained for the specific environment but the best individual target-source mappings have

an average performance improvement of about 1%. The FSR techniques are also shown

to be effective at utilizing multiple source domains through ensemble learning (Objective
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1.2. When a stacked ensemble is used the performance improvement over the generalized

model is between 15% and 20% and the improvement over the specialized model is 5%

to 15%. Finally we have shown that FSR techniques are applicable to other domains by

evaluating the performance on a document classification problem (Objective 1.3).

The MVTL techniques have been shown to be effective in solving the new sensing

platform problem. When two sensing platforms are introduced simultaneously into the

new environment and there is no other pre-existing sensing platform in the environment

(Objective 1.4), only Co-EM is able to outperform training each model separately. When

a pre-existing sensing platform is already trained in the environment and a new sensing

platform is introduced (Objective 1.5), the MVTL techniques improve upon training the

new model separately by as much as 20%. When considering the effect of integrating

three or more different sensing platforms (Objective 1.6), we see that the PECO-E

algorithms tends to be the most stable across different situations while the PECO and

Co-EM have the potential to yield the best performance but all also highly dependent

upon the accuracy of the sensing platforms. Finally, we have evaluated the derived

accuracy bounds (Objective 1.7) and found that the upper and lower bounds do indeed

bound the observed accuracy of the learner. Further, the average of the upper and

lower bound is found to be a good approximation to the observed accuracy, usually

approximating the accuracy within a few percentage points.

We can draw some general guidelines outlining when each technique is likely to be

most effective. First, determine if you face a new environment problem (i.e. you have two

or more dataset with different feature-spaces) or a new sensing platform problem (i.e.

you have to or more dataset that share instances). For the new environment problem, if

you have multiple source datasets then applying the ELFSR techniques will likely yield
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the best performance results. If only a single source dataset is available, then GAFSR

or GrFSR are likely to be the most effective but, they also are more computationally

expensive. ISFSR may give slightly lower accuracies but will also find a mapping much

faster. Finally, if you do not have any labeled data in the target dataset then a manual

mapping is your best bet. Currently, USFSR is not up to the task of producing a good

mapping automatically. For the new sensing platform problem we can encounter several

different scenarios. In the traditional multi-view scenario, where each sensing platform

has similar amounts of labeled data, co-EM is the most effective, but in many cases just

training each view separately may yield better results. In a well-trained scenario, where

there is at least one view which is already trained, both Co-EM and Teacher-Learner

approaches work well. If no labeled data is available for the new sensing platform

using PECO to bootstrap labels is almost as effective as if the ground truth labels were

available. Finally, when selecting which views to include in the multi-view learning, if

the accuracy of the systems are known, the most accurate systems should play the role

of teacher. If the accuracy of the systems are unknown, combining the systems using an

ensemble method as in PECO-E may help mitigate the risk of selecting an inaccurate

system to play the role of teacher but may also result in lower accuracies scores than

might otherwise be achieved.
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Chapter 6

Conclusions

Activity recognition has many promising applications such as health-care and energy

efficiency. One challenge that currently hinders the large-scale adoption of activity

recognition systems is the need to gather labeled data on which the activity recogni-

tion system can be trained. Every time a new environment or a new sensing platform

is encountered, new training data must be gathered. We have developed several het-

erogeneous transfer learning algorithms which solve the new environment problem by

mapping the feature-space of the new environment to previously encountered feature-

spaces. The techniques are able to outperform a manual mapping based upon sensor

locations and in some cases outperforms a classifier which has been trained solely in the

new environment. Using multiple source classifiers in a stacking ensemble is shown to

produce even better classification accuracies.

We have also developed several heterogeneous transfer learning algorithms based on

multi-view learning to solve the new sensing platform problem. In particular, we have

shown that the PECO algorithm is able to bring new activity recognition systems online

without the use of any manually labeled training data for the new recognition system.

The accuracy and recall of the new system is nearly equivalent to that of a system which

is provided ground truth labels in place of the bootstrapped labels. Furthermore, the

accuracy and recall of the PECO trained system show significant improvement over a

system which is trained only on the limited amount of ground truth labels.
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In addition to the empirical results presented in Chapter 5, we also developed the-

oretical bounds on the accuracy of a learner trained under the teacher-learner model.

We have shown how the teacher-learner model is a variation of multi-view learning and

hence has the same PAC guarantees as other multi-view learning algorithms. Using the

accuracy of the teacher and the level of agreement between the teacher and the learner

we estimate the expected accuracy of the learner and we also develop upper and lower

bounds on the accuracy of the learner.

In summary, the main contributions of this work include:

• A new class of heterogeneous transfer learning algorithms, FSR. The key feature

of FSR is that, unlike most other heterogeneous transfer learning algorithms, FSR

maps the target feature-space onto the source feature-space. This allows for more

efficient evaluation of the empirical results produced by the mapping which can

then be used to search for good mappings. The approach also facilitates the use

of ensemble learners when combining multiple source domains.

• Novel heterogeneous transfer learning algorithms (GAFSR, GrFSR and SFSR)

which do not rely on feature-feature, feature-instance, or instance-instance co-

occurrence data. These algorithms can be used to solve the new environment

problem and outperform the Manual mapping technique by about 5%. GAFSR and

GrFSR have polynomial time complexities (cubed in the number of features and

linear in the number of instances). SFSR also has a polynomial time complexity

(squared in the number of features and linear in the number of instances).

• The ELFSR algorithms which use ensemble learning in conjunction with FSR

to combine multiple source datasets. These techniques outperform the combined
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Manual mapping technique by 20%.

• Framing the new sensing platform problem as a multi-view learning problem.

• A new class of uninformed multi-view transfer learning algorithms, PECO. The

key feature of PECO is to use a trained activity recognition system as a teacher to

bootstrap labels for a new activity recognition system. After the initial labels are

bootstrapped, any other informed MVTL technique (such as co-Training or co-EM)

can be applied to further improve the classification algorithm. These algorithms

can be used to solve the new sensing platform problem. When compared to training

a system without this data it results in performance improvements of 20%

• Novel algorithms for multi-view transfer learning using an ensemble to combine

multiple views. These algorithms can be used to solve the new sensing platform

problem and provide greater stability in the face of unknown initial accuracies.

• The novel application of multi-view learning to transfer knowledge between sensor

modalities

• Positioning of the teacher-learner framework within transfer learning literature.

• PAC-style bounds to the teacher-learner framework.

• Formulas for the expected accuracy of the learner as well as upper and lower

bounds on the accuracy. These can provide a good estimate of the accuracy of the

learner when no labeled training data is available for evaluation.

Heterogeneous transfer learning is a hard problem in general. While successful,

the techniques we presented here also have some important limitations which could be
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addressed in future work. For example, the FSR techniques assume that although the

features are semantically different they are syntactically similar. In other words, the

features have similar values or ranges of values even if those values mean different things

in the different domains. One possible technique which could be used to overcome this

limitation is adding a normalization step so that all of the features have similar value

ranges. The currently proposed uninformed FSR technique does not yet produce results

comparable to the other techniques or to the baseline techniques. New meta-features

could be explored to improve the accuracy of USFSR. Additionally, uninformed variants

of GAFSR and GrFSR could be explored by using a fitness function which does not rely

on labeled target data. One possible candidate function could be based upon preserving

the distance between points in the original space and points in the mapped space.

The MVTL techniques rely on the assumption that two or more activity recognition

systems can observe the same events and can communicate with one another. Our

current work has focused on multiple sensor streams which are aligned using a common

timestamp. However, in the future we plan to implement MVTL techniques which

run in real-time allowing multiple sensing platforms to share label information through

our middleware architecture. Another limitation of MVTL techniques is the need for

a shared label space. Applying some of the transfer learning algorithms for handling

different label spaces could be used to potentially overcome this challenge.

As the number of devices with sensing and computing capabilities increase, a person-

alized activity recognition ecosystem becomes possible. By developing techniques which

solve the new environment problem and the new sensing platform problem, this work

contributes to the goal of making such personalized ecosystems possible.
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tivity recognition across sensor networks. In Patrik Floren, Antonio Krger, and

Mirjana Spasojevic, editors, Pervasive Computing, volume 6030 of Lecture Notes

in Computer Science, pages 283–300. Springer Berlin / Heidelberg, 2010.

[110] A. Venkatesan. A Study of Boosting based Transfer Learning for Activity and

Gesture Recognition. PhD thesis, Arizona State University, 2011.

[111] A. Venkatesan, N.C. Krishnan, and S. Panchanathan. Cost-sensitive boosting for

concept drift. In International Workshop on Handling Concept Drift in Adaptive

Information Systems 2010, pages 41–47, 2010.

[112] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-

learning. Artificial Intelligence Review, 18:77–95, 2002.

[113] Xiaojun Wan. Co-training for cross-lingual sentiment classification. In Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Inter-

national Joint Conference on Natural Language Processing of the AFNLP, pages

235–243. Association for Computational Linguistics, 2009.

[114] Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes analy-

sis. In Proceedings of the 25th international conference on Machine learning, pages

1120–1127. ACM, 2008.

[115] Liang Wang, Tao Gu, Xianping Tao, and Jian Lu. Sensor-based human activ-

ity recognition in a multi-user scenario. In Ambient Intelligence, pages 78–87.

Springer, 2009.



154

[116] Zheng Wang, Yangqiu Song, and Changshui Zhang. Transferred dimensionality

reduction. In Walter Daelemans, Bart Goethals, and Katharina Morik, editors,

Machine Learning and Knowledge Discovery in Databases, volume 5212 of Lecture

Notes in Computer Science, pages 550–565. Springer Berlin / Heidelberg, 2008.

[117] B. Wei and C. Pal. Heterogeneous transfer learning with rbms. In Twenty-Fifth

AAAI Conference on Artificial Intelligence, 2011.

[118] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[119] Chen Wu, Amir Hossein Khalili, and Hamid Aghajan. Multiview activity recog-

nition in smart homes with spatio-temporal features. In Proceedings of the Fourth

ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC ’10,

pages 142–149, New York, NY, USA, 2010. ACM.

[120] Lin Xian-ming and Li Shao-zi. Transfer adaboost learning for action recognition.

In IT in Medicine Education, 2009. ITIME ’09. IEEE International Symposium

on, volume 1, pages 659 –664, aug. 2009.

[121] Jun Yang, Rong Yan, and Alexander G. Hauptmann. Cross-domain video concept

detection using adaptive svms. In Proceedings of the 15th international conference

on Multimedia, MULTIMEDIA ’07, pages 188–197, New York, NY, USA, 2007.

ACM.

[122] Q. Yang. Activity recognition: linking low-level sensors to high-level intelligence.

In Proceedings of the 21st international jont conference on Artifical intelligence,

pages 20–25. Morgan Kaufmann Publishers Inc., 2009.



155

[123] Qiang Yang, Yuqiang Chen, Gui-Rong Xue, Wenyuan Dai, and Yong Yu. Hetero-

geneous transfer learning for image clustering via the social web. In Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-

tional Joint Conference on Natural Language Processing of the AFNLP: Volume

1-Volume 1, pages 1–9. Association for Computational Linguistics, 2009.

[124] Weilong Yang, Yang Wang, and Greg Mori. Learning transferable distance func-

tions forhuman action recognition. In Liang Wang, Guoying Zhao, Li Cheng, and

Matti Pietikinen, editors, Machine Learning for Vision-Based Motion Analysis,

Advances in Pattern Recognition, pages 349–370. Springer London, 2011.

[125] Yi Yao and Gianfranco Doretto. Boosting for transfer learning with multi-

ple sources. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1855–1862. IEEE, 2010.

[126] Z. Zhao, Y. Chen, J. Liu, and M. Liu. Cross-mobile elm based activity recognition.

International Journal of Engineering and Industries, 1(1):30–38, 2010.

[127] Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu. Cross-people mobile-phone based

activity recognition. In Twenty-Second International Joint Conference on Artificial

Intelligence, 2011.

[128] V.W. Zheng, D.H. Hu, and Q. Yang. Cross-domain activity recognition. In Ubi-

comp, volume 9, pages 61–70, 2009.

[129] V.W. Zheng, S.J. Pan, Q. Yang, and J.J. Pan. Transferring multi-device localiza-

tion models using latent multi-task learning. In Proceedings of the 23rd national

conference on Artificial intelligence, pages 1427–1432, 2008.



156

[130] Wenming Zheng, Xiaoyan Zhou, Cairong Zou, and Li Zhao. Facial expression

recognition using kernel canonical correlation analysis (kcca). Neural Networks,

IEEE Transactions on, 17(1):233–238, 2006.

[131] Erheng Zhong, Wei Fan, Jing Peng, Kun Zhang, Jiangtao Ren, Deepak Turaga,

and Olivier Verscheure. Cross domain distribution adaptation via kernel mapping.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1027–1036. ACM, 2009.



157

Appendix A

Individual Class ROC Curves
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(a) Enter Home ROC curve.
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(b) Personal Hygiene ROC curve.
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(c) Eat Lunch ROC curve.
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(d) Leave Home ROC curve.

Figure 42: Individual Class ROC Curves
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(a) Cook Dinner ROC curve.
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(b) Eat Dinner ROC curve.
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(c) Exercise ROC curve.
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(d) Cook Lunch ROC curve.
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(e) Wash Dinner Dishes ROC curve.
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(f) Relax ROC curve.

Figure 43: Individual Class ROC Curves (cont.)
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(a) Read ROC curve.
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(b) Wash Lunch Dishes ROC curve.
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(c) Phone ROC curve.
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(d) Evening Meds ROC curve.
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(e) Eat Breakfast ROC curve.
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(f) Watch TV ROC curve.

Figure 44: Individual Class ROC Curves (cont.)
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(e) Housekeeping ROC curve.
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(f) Bathe ROC curve.

Figure 45: Individual Class ROC Curves (cont.)
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(a) Groom ROC curve.
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(c) Sleep out of Bed ROC curve.
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(e) Morning Meds ROC curve.
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(f) Cook Breakfast ROC curve.

Figure 46: Individual Class ROC Curves (cont.)
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(a) Take Medicine ROC curve.
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(b) Bed-Toilet Transition ROC curve.
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(c) Toilet ROC curve.
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(d) Work ROC curve.
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(e) Other Activity ROC curve.
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(f) Entertain Guests ROC curve.

Figure 47: Individual Class ROC Curves (cont.)
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(a) Sleep ROC curve.
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Figure 48: Individual Class ROC Curves (cont.)
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Appendix B

Accuracy and Recall of the Source (Teacher) View
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Figure 49: Teacher classification accuracy vs. labeled data using View 2 and View 3
where View 2 is the teacher. This corresponds to the learner accuracies in Figure 25.

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1

Equal

0.001 0.01 0.1

Trained

0.001 0.01 0.1

PECO

None
Oracle

Random

CoTrain
CoEM

Figure 50: Teacher average recall vs. labeled data using View 2 and View 3 where View
2 is the teacher. This corresponds to the learner recall scores in Figure 26.
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Figure 51: Teacher classification accuracy vs. labeled data using View 1 and View 2
where View 1 is the teacher. This corresponds to the learner accuracies in Figure 31.
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Figure 52: Teacher average recall vs. labeled data using View 1 and View 2 where View
1 is the teacher. This corresponds to the learner recall scores in Figure 32.
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Figure 53: Teacher classification accuracy vs. labeled data using View 3 and View 2
where View 3 is the teacher. This corresponds to the learner accuracies in Figure 33.
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Figure 54: Teacher average recall vs. labeled data using View 3 and View 2 where View
3 is the teacher. This corresponds to the learner recall scores in Figure 34.
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