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Abstract Activity recognition algorithms have matured and become more ubiquitous in
recent years. However, these algorithms are typically customized for a particular sensor
platform. In this paper, we introduce PECO, a Personalized activity ECOsystem, that trans-
fers learned activity information seamlessly between sensor platforms in real time so that
any available sensor can continue to track activities without requiring its own extensive
labeled training data. We introduce a multi-view transfer learning algorithm that facilitates
this information handoff between sensor platforms and provide theoretical performance
bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that
utilize heterogeneous sensor platforms to perform activity recognition. These results indi-
cate that not only can activity recognition algorithms transfer important information to new
sensor platforms, but any number of platforms can work together as colleagues to boost
performance.

Keywords Activity recognition - Machine learning - Transfer learning - Pervasive
computing

1 Introduction

Activity recognition and monitoring lie at the center of many fields of study. An individual’s

activities affect that individual, the people nearby, society, and the environment. In the past,
theories about behavior and activity were formed based on self-report and limited in-person
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Traditional Machine Learning

Transfer Learning

Fig. 1 Intraditional machine learning, training and testing data come from the same domain and have similar
distributions. In contrast, transfer learning uses knowledge from a different, related domain to improve learning
for a new domain. In a personalized activity ecosystem, the home, phone, wearable, and camera use transfer
learning to act as colleagues despite their diversity

observations. More recently, the maturing of sensors, wireless networks, and machine learn-
ing have made it possibly to automatically learn and recognize activities from sensor data.
Now, activity recognition is becoming an integral component of technologies for health care,
security surveillance, and other pervasive computing applications.

As the number and diversity of sensing devices increase, a personalized activity moni-
toring ecosystem can emerge. Instead of confining activity recognition to a single setting,
any available device can “pick up the gauntlet” and provide both activity monitoring and
activity-aware services. The sensors in a person’s home, phone, vehicle, and office can work
individually or in combination to provide robust activity models.

One challenge we face in trying to create such a personalized ecosystem is that training
data must be available for each activity based on each sensor platform. Gathering a sufficient
amount of labeled training data is labor intensive for the user.

Transfer learning techniques have been proposed to handle these types of situations where
training data are not available for a particular setting. Transfer learning algorithms apply
knowledge learned from one problem domain, the source, to a new but related problem,
the target (see Fig. 1). While these algorithms typically rely on shared feature spaces or
other common links between the problems, in this paper we focus on the ability to transfer
knowledge between heterogeneous activity learning systems where the domains, the tasks,
the data distributions, and even the feature spaces can all differ between the source and the
target.

As an example, consider a scenario where training data were provided to train a smart
home to recognize activities based on motion and door sensors. If the user wants to start using
a phone-based recognizer, the label-and-train process must be repeated. To avoid this step,
we design an omni-directional transfer learning approach, or collegial learning, that allows
the smart home to act as a teacher to the phone and allows the phone in turn to boost the
performance of the smart home’s model.

Our collegial activity learning techniques can be applied to even broader scenarios. Smart
Health is a recently proposed concept involving collaboration between a user’s mobile device
and the city-wide sensing infrastructure to provide better healthcare. Solanas et al. [1] outline
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several of the challenges and opportunities presented by a Smart Health system, many of
which are addressed through collegial learning. Collegial learning could be used to introduce
new sensor platforms locally around the user and globally within the smart city infrastructure.
Collegial learning could also play a vital role in integrating these heterogeneous sensing
platforms with minimal human input.

2 Activity recognition

Our proposed Personalized activity ECOsystem, PECO, builds on the notion of activity
recognition or labeling activities based on a sensor-based perception of the user and the
environment. Let e represent a sensor reading and x be a sequence of such sensor readings,
e1, ...ey. Y is a set of possible activity labels, and y is the activity label associated with a
particular sequence of sensor events such as x. The problem of activity recognition is to map
features describing a sequence of sensor readings (sensor events), x =< ej €3...e, >, 0nto a
value from a set of predefined activity labels, y € Y. This is typically accomplished by using
a supervised machine learning algorithm that learns the mapping based on a set of sample
data points in which the correct label is provided.

Traditional activity recognition, as shown in Fig. 2, consists of collecting sensor data,
preprocessing the data and partitioning it into subsequences, extracting a high-level set of
features from the data subsequences, and providing the feature vector to a supervised learning
algorithm [2-7]. If we want to extend traditional activity recognition to create a personalized
activity ecosystem, we need to consider that raw sensor data and corresponding feature vectors
change dramatically between sensor platforms. Different sensor types excel at representing
different classes of activities. Not surprisingly, most activity recognition research thus focuses
on a single sensor modality. Common activity learning sensor modalities are ambient sensors
[8-11], wearable [12—16], object [17—-19], phone [20,21], microphone [22], and video [23—
26].

Many different machine learning methods have been developed for activity recognition.
These include Bayesian approaches [8,27,28], hidden Markov models [29-32], conditional
random fields [11,28,33], support vector machines [15], decision trees [27], and ensemble
methods [28,34,35]. Each of these approaches offers advantages in terms of amount of
training that is required, model robustness, and computational cost.

The focus of this paper is not on improving the underlying activity classification method-
ology but rather on transferring learned information between substantially different sensor
platforms. As a result, the only modification to activity recognition itself we made that dif-
ferentiates this work from some of the others is to perform recognition in real time from
streaming data [36].

Collegial learning applies to other application domains when the target concept can be
represented from different viewpoints. To illustrate this point, we describe a toy domain
which has two different view points. The first viewpoint is a two-dimensional feature space
with real-valued features A and B. The second viewpoint is three-dimensional feature space
also with real-valued features C, D, and E. The features A and B are unrelated to the features
C, D, or E. Both viewpoints describe the same two-class target concept, and we use 0, 1 as the
label space. Figure 3 shows some sample data from the two viewpoints. We will use this toy
domain as an additional example when describing the collegial learning process throughout
the rest of this paper.
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Fig. 3 Sample data from the toy dataset. Viewpoint 1 (left) has 2 features A and B while viewpoint 2 (right)
has 3 features C, D, and E. Class 1 is shown as red triangles, and class 2 is shown as blue circles (color figure
online)
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3 Transfer learning for activity recognition

In order to share learned activity information between sensor platforms, we need to design
heterogeneous transfer learning approaches. In the field of machine learning, transfer
learning refers to transferring learned knowledge to a different but related problem. This
idea is studied under a variety of pseudonyms such as learning to learn, life-long learn-
ing, knowledge transfer, inductive transfer, context-sensitive learning, and meta-learning
[37-41]. It is also closely related to self-taught learning, multi-task learning, domain adap-
tation, and co-variate shift [42,43]. Because of the many terms that are used to describe
transfer learning, we provide a formal definition of the terms which we will use through-
out this paper, starting with definitions for domain and task, based on Pan and Yang
[44]:

Definition 1 (Domain) A domain D is a two-tuple (x, P(X)). Here, x represents the feature
space of D and P (X) is the probability distribution of X = {xy, ..., x,,} € x where m is the
number of features of X.

Definition 2 (7Task) A task T is a two-tuple (Y, f()) for a given domain D. Y is the label
space of D, and f() is a predictive function for D. f() is sometimes written as a conditional
probability distribution P(y;|x) where y; € Y and x € x. f() is not given but can be learned
from the training data.

In the case of activity recognition, the domain is defined by the feature space based on the
most recent sensor readings and a probability distribution over all possible feature values. In
the activity recognition example given earlier, the set of sensor readings x is one instance of
xe x. The task is composed of a label space ¥ which contains the set of labels for activities
of interest together with a conditional probability distribution representing the probability of
assigning label y; € Y given the observed data point x € x.

In the toy dataset, our two viewpoints each represent a domain. In viewpoint one, x
is the two-dimensional feature space. P(X) is the probability distribution of data instances
in the viewpoint. Y is the label space {0, 1}, and f() is the function which assigns and
instance in the viewpoint a class label 0 or 1. We can now provide a definition of transfer
learning.

Definition 3 (Transfer Learning) Given a set of source domains DS = {Dyy, ..., Ds,},
n > 0, a target domain Dy, a set of source tasks TS = {Tsy, ..., Ty} where Ty; € TS
corresponds with Dg; € DS, and a target task 7; which corresponds with D;, transfer
learning improves the learning of the target predictive function f() in D;, where D; ¢ DS
and/or T; ¢ TS.

Definition 3 encompasses many transfer learning scenarios. The source domains can dif-
fer from the target by having a different feature space, a different distribution of data points,
or both. The source tasks can also differ from the target task by having a different label
space, a different predictive function, or both. In addition, the source data can differ from
the target data by having a different domain, a different task, or both. However, all trans-
fer learning problems rely on the assumption that there exists some relationship between
the source and target which allows for successful transfer of knowledge from source to
target.

Previous work on transfer learning for activity recognition has focused primarily on trans-
fer between users, activities, or settings. While most of these methods are constrained to one
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set of sensors [45-51], a few efforts have focused on transfer between sensor types. In addi-
tion to the teacher—learner model, we will discuss later [52], Hu and Yang [53] introduced a
between-modality transfer technique that requires externally provided information about the
relationship between the source and domain spaces.

Other transfer learning approaches have been developed outside activity learning that can
be valuable for sharing information between heterogeneous sensor platforms. For example,
domain adaptation allows different source and target domains, although typically the only
difference is in the data distributions [54]. Differences in data distributions have been consid-
ered when the source and target domain feature spaces are identical, using explicit alignment
techniques [55-57]. In contrast, we focus on transfer learning problems where the source and
target domains have different feature spaces. This is commonly referred to as heterogeneous
transfer learning, defined below.

Definition 4 (Heterogeneous Transfer Learning) Given domains DS, domain Dy, tasks 7§,
and task 7; as defined in Definition 3, heterogeneous transfer learning improves the learning
of the target predictive function f;() in D,, where x; N (x51 U -+ U x) = 0.

Our toy dataset clearly represents a heterogeneous transfer learning scenario. The two
viewpoints have the same label space but have different feature spaces and probability dis-
tributions on those feature spaces.

Heterogeneous transfer learning methods have not been attempted for activity recognition,
although they have been explored for other applications. Some previous research has yielded
feature space translators [58,59] as well as approaches in which both feature spaces are
mapped to a common lower-dimensional space [60,61]. Additionally, previous multi-view
techniques utilize co-occurrence data, or data points that are represented in both source and
target feature spaces [62—64].

There remain many open challenges in transfer learning. One such challenge is performing
transfer-based activity recognition when the source data are not labeled. Researchers have
leveraged unlabeled source data to improve transfer to the target domain [42,65], but such
techniques have not been applied to activity recognition nor used in the context of multiple
source/target differences. We address both of these challenges in this paper by introducing
techniques for transferring knowledge between heterogeneous feature spaces, with or without
labeled data in the target domain.

Note that this work differs from multi-sensor fusion for activity learning [66—68]. Sensor
fusion techniques combine data derived from diverse sensory data. However, they typically
require that training data be available for all of the sensor types. In contrast, we are interested
in providing a “cold start” for new sensor platforms that allow them to perform activity
recognition with minimal training data of their own. The unique contributions of this work
thus center on both two new approaches to multi-view learning with theoretical bounds and
on development of a real-time personalized ecosystem that transfers activity knowledge in
real time between heterogeneous sensor platforms.

Co-Training methods have been available for years as a semi-supervised machine learning
technique, but have rarely if ever been applied as a transfer learning technique between
heterogeneous systems. Furthermore, extending them to work without labeled data in the
target learning space is critical to deploying new learning systems with minimal user effort
required. Lastly, the learning bounds are useful both from a theoretical viewpoint and also
from a practical viewpoint. Previously, predicting the accuracy of a learning system required
labeled data in the target space, but now we can both train a learning system and predict its
accuracy without requiring any user-labeled data in the target domain.
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4 Personalized ecosystem

Every day brings new advances in sensing and data processing. Given the increasing preva-
lence of diverse sensors, we need to be able to introduce new activity sensory devices without
requiring additional training time and effort. In response, we are designing multi-view tech-
niques to transfer knowledge between activity recognition systems. The goal is to increase
the accuracy of the collaborative ecosystem while decreasing the need for new labeled data.

To illustrate our approach, recall the earlier example in which a home (source view) is
equipped with ambient sensors to monitor motion, lighting, temperature, and door use. The
resident now wants to train smart phone sensors (target view) to recognize the same activities.
Whenever the phone is located inside the home, both sensing platforms collect data while
activities are performed, resulting in a multi-view learning opportunity where the ambient
sensors represent one view and the phone sensors represent a second view. If the phone can
be trained, it can also monitor activities outside of the home and can update the home’s
model when the resident returns. The phone may converge upon a stronger model than the
home either because it receives training data of its own or because it has a more expressive
feature space. In these cases, the target view can be used to actually improve the source’s
model. We will consider both informed and uninformed approaches to multi-view learning,
distinguished by whether labeled data are available in the target domain (informed) or not
(uninformed).

4.1 Informed multi-view learning

Two techniques have been extensively used by the community for multi-view learning when
labeled training data are available in the target domain. In Co-Training [63], a small amount
of labeled data in each view are used to train a separate classifier for each view (for example,
one for the home and one for the phone). Each classifier then assigns labels to a subset of the
unlabeled data, which can be used to supplement the training data for both views. We first
adapt Co-Training for activity recognition, as summarized in Algorithm 1. While Algorithm
1 is designed for binary classification, it can handle activity recognition with more than two
classes by allowing each view to label positive examples for each activity class.

Algorithm 1: Co-Training

Input: a set L of labeled activity data points
a set U of unlabeled activity data points
Create set U’ of u examples, U'c U
while U’'#¢ do
Use L to train activity recognizer /4, for view 1

Use L to train activity recognizer 4, for view k
Label most confident p positive data points and
n negative data points from U’ using /;

Label most confident p positive data points and
n negative data points from U’ using /;

Add the newly-labeled data points to L

Add k(p + n) data points from U to U’
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ALGORITHM 2: CO-EM

Input: a set L of labeled activity data points
a set U of unlabeled activity data points
Use L to train classifier /#; on view 1
Create set U; by using /4; to label U
for i =0tomdo
Use L v U, to train classifier 4, on view 2
Create set U, by using A, to label U

Use L v Uy to train classifier 4 on view k
Create set U; by using /4 to label U

The second informed technique, Co-EM, is a variant of Co-Training that has been shown
to perform better in some situations [69]. Unlike Co-Training, Co-EM labels the entire set
of unlabeled data points every iteration. Training continues until convergence is reached
(measured as the number of labels that change each iteration) or a fixed number of iterations
m are performed, as in Algorithm 2. We can introduce additional classifiers as needed, one
for each view. Each view can also employ a different type of classifier, as is best suited for
the corresponding feature space.

4.2 Uninformed multi-view learning

In a personalized ecosystem, labeled data are not always available in the target domain. This
would happen, for example, when a new sensor platform is first integrated into the ecosystem.
In this situation, we need to use an uninformed multi-view technique. Uninformed multi-view
algorithms have been proposed and tested for applications such as text mining [70]. One such
algorithm is Manifold Alignment [65], which assumes that the data from both views share a
common latent manifold which exists in a lower-dimensional subspace. If this is true, then
the two feature spaces can be projected onto a common lower-dimensional subspace using
principal component analysis [71]. The subsequent pairing between views can be used to
optimally align the subspace projections onto the latent manifold using a technique such as
Procrustes analysis. A classifier can then be trained using projected data from the source
view and tested on projected data from the target view. This is summarized in Algorithm 3.

Algorithm 3: Manifold Alignment Algorithm (two views)

Input: a set L of labeled activity data points in view 1

sets U;, U of paired unlabeled data points
(one set for each view)

XEV;=PCA(U;) //map U, onto lower-dimensional space

Y =PCA(U,) // map U, onto same space

// Apply Procrustes Analysis to align X and Y

UZVT « SVD(Y'X)

o« Ut

k «Trace(X) / Trace(Y'Y)

Y < kYQ

Project L onto low-dimensional embedding using EV/

Train classifier on projected L

Test classifier on Y’
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Finally, we consider a teacher—learner model that was introduced by Kurz et al. [52] to
train new views that have no labeled training data. This approach, summarized in Algorithm
4, can be applied in settings where labeled activity data are available in the source view but
not the target view.

We note that the teacher—learner algorithm is equivalent to a single-iteration version of
Co-EM when no labeled data are available in the target view. This observation allows us
to provide a theoretical foundation for the technique. Valiant [72] introduced the notion of
probably approximately correct (PAC) learning to determine the probability that a selected
classification function will yield a low generalization error. Blum and Mitchell [63] show
that multi-view learning has PAC bounds when three assumptions hold: (1) the two views
are conditionally independent given the class label, (2) either view is sufficient to correctly
classify the data points, and (3) the accuracy of the first view is at least weakly useful.

In this paper, we enhance these baseline multi-view learning approaches for application to
activity learning, specifically for multiple activity classes. We also introduce new approaches
to multi-view learning for this problem and provide a PAC analysis for the proposed PECO
approach.

Algorithm 4: Teacher-Learner Algorithm

Input: a set L of labeled activity data points in view 1
a set U of unlabeled data points

Use L to train activity recognizer /; for view 1

Create set U; by using /; to label U

Use U; to train classifier /> on view 2

Use Uj to train classifier 4 on view k

Algorithm 5: PECO Algorithm

Input: a set L of labeled activity data points in view 1
a set U of unlabeled data points

Use L to train activity recognizer /; for view 1

Create set U; by using 4, to label U'c U

L=LuU

U=U-U

Apply Co-Training or Co-EM

4.3 Personalized ECOsystem (PECO) algorithm

Our Personalized ECOsystem (PECO) approach to multi-view learning combines the benefits
of iterative informed strategies such as Co-Training and Co-EM with the benefits of using
teacher-provided labels for new uninformed sensor platforms that have no labeled activity
data for training. The PECO approach is summarized in Algorithm 5. Not only can PECO
facilitate activity recognition in a new view with no labeled data, but in some cases the
accuracy of view 1 actually improves when view 2, the target view, subsequently takes on the
role of teacher and updates view 1’s model. This illustrates our notion of collegial learning.

In the PECO algorithm, the teacher (source view, view 1) initially provides labels for a
few data points that both the teacher and the learner (target view, view 2) observe with their
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different sensors and represent with their different feature vectors. Next, PECO transitions to
an iterative strategy by applying Co-Training or Co-EM. In this way, the learner can continue
to benefit from the teacher’s expertise while at the same time contributing its own knowledge
back to the teacher, as a colleague.

In our home—phone transfer scenario, the smart home may initially act as a teacher because
it has labeled activity data available and the phone does not. When the home and phone are
co-located, the home can opportunistically “call out” activity labels that the phone can use
to label the data captured in its own sensor space. Eventually the resident may grab their
phone and leave the home. While out, the phone will observe new activity situations and may
even receive labels from the user for those situations. When the individual returns home, the
home and phone act as colleagues, transferring expertise from each independent classifier
and feature representation to improve the robustness of both activity models for both sensor
platforms. This scenario can be extended for any number of types and diversity of sensor
platforms.

In addition to the new PECO algorithm, we introduce a second multi-view approach that
handles more than two views, which we refer to as Personalized ECOsystem with Ensem-
bles, or PECO-E. PECO-E first combines multiple teacher views into a single view using a
weighted voting ensemble where each vote is weighted by the classifier’s confidence in the
activity label. This newly formed teacher model can then transfer its knowledge to the learner
view using one of the existing binary multi-view techniques described in Sects. 4.2 and 4.3.

4.4 Online transfer learning

In order to demonstrate the ability to transfer activity knowledge between sensor platforms
in real time, we implemented PECO as part of the CASAS smart home system [73]. The
CASAS software architecture is shown in Fig. 4. The CASAS physical layer includes sensors
and actuators. The middleware layer is driven by a publish/subscribe manager with named
broadcast channels that allow bridges to publish and receive text messages. The middleware
also provides services such as adding time stamps to sensor readings, assigning unique
identifiers to devices, and maintaining the state of the system. Every CASAS component
communicates via a customized XMPP bridge to this manager. These bridges include the
ZigBee bridge to provide network services, the Scribe bridge to archive data, and bridges for
each of the software components in the application layer including PECO. When the sensors
generate readings, they are sent as text messages to the CASAS middleware. PECO’s activity
recognition algorithm generates activity labels for sensor readings in real time as they are
received from one sensor platform. A new sensor platform can be announced to CASAS and
integrated without any other changes to the system, simply by announcing its presence and
function. Activity labels can then be sent from the middleware to PECO’s new sensor view in
real time in order to bring the new sensor platform up to speed. Implementing a personalized
ecosystem within CASAS provides the ability to seamlessly introduce new sensor capabilities
and transfer knowledge from one platform to another and back. Transferring this information
will typically boost the activity recognition performance for both platforms.

4.5 PECO accuracy bounds

Without labeled activity data in the target view, we cannot compute performance measures
such as model accuracy. We can, however, still derive theoretical bounds for worst-case, best-
case, and expected-case learner performance. We make the assumption that the previously
observed teacher accuracy on labeled data is a good indicator of the teacher’s accuracy on
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Fig. 4 CASAS software architecture to support real-time transfer learning between heterogeneous platforms

unlabeled data. Our accuracy bound also relies on the average level of agreement, g, between
the teacher and learner for unlabeled data points in U. We define ¢ in Eq. 1, where i (x) is
the teacher’s activity label for data point x and /7 (x) is the learner’s label for x.

1 1 if hy(x) = hy(x)
q‘|U|Z[0 if hy(x) # hy(x) @

xeU

In the case of binary classification tasks, Eq. 2 calculates the expected accuracy of the learner,
r. This calculation assumes that the teacher—learner agreement is independent of the teacher’s
classification accuracy, p.

r=pg+0—=p)d-q)
=2pg+(1—-p—q) 2)

The first term, pg, represents the expected accuracy of the learner given that the teacher
correctly classifies the data point. The second term represents the expected learner accuracy
given that the teacher incorrectly classifies the data point. Note that the learner can only be
accurate in the second case when it disagrees with the teacher.

To generate upper and lower learner accuracy bounds, we must consider both teacher—
learner agreement when the teacher is correct (¢1) and the agreement when the teacher is
incorrect (g2). Substituting these variables into Eq. 2 results in Eq. 3. Accuracy is then
optimized by maximizing ¢ and minimizing g».

r=pq+0-=p)d-q) 3
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Here g; and g, are subject to the following constraints:

e pq1+ (1 —plg2 =gq,
e 0<¢g; <1, and
e 0<qp =1

These constraints ensure that the original level of agreement ¢ is preserved and that g; and ¢»
are valid levels of agreement. Note that in the first constraint, minimizing g» maximizes q
and vice versa. If p > ¢, then ¢» has a minimum value of 0 and all the constraints are satisfied.
This implies that g; = ¢/ p is the maximum value of g;. Substituting this expression into
Eq. 3 results in Eq. 4.

r=q+1-p “

If p < g, then g| has a maximal value of 1 and all of the constraints are satisfied. This implies
that ¢ = (¢ — p)/(1 — p) is the minimum value of ¢,. Substituting into Eq. 3 results in
Eq. 5.

r=p+1-—gq 5)

Equations 4 and 5 can then be combined into Eq. 6, which represents the upper bound on
learner accuracy.

r=1-Ip—gq| ©)

Next, the lower bound on learner accuracy can be derived by minimizing ¢; and maximizing
g> in Eq. 3, subject to the same constraints on g and g». If (1 — p) >, g then g has a
minimum value of 0 and all the constraints are satisfied. This implies that go = ¢ /(1 — p) is
the maximum value of ¢,. Substituting into Eq. 3 results in Eq. 7.

If (1 — p) < g, then g has a maximum value of 1 and all of the constraints are satisfied. This
implies that g1 = (¢ — 1 4+ p)/p is the minimum value of g;. Substituting in Eq. 3 results
in Eq. 8.

r=q—1+p (8)

Finally, Eqgs. 7 and 8 are combined into Eq. 9, which calculates the lower bound on learner
accuracy.
r=I[l1-p—q| (C))

We can now extend these bounds for the k-ary classification problem. We first note that
we can add an additional term, z, to Eq. 3 which represents the probability that the learner
correctly classifies a data point given that the teacher misclassified it and the teacher and
learner disagree. The result is shown in Eq. 10.

r=pq +{1—-p)(l—-qgz (10)

In binary classification, z = 1 and can be ignored. Similarly, the upper bound for k-ary
classification will also have z = 1 so our upper bound does not change. The lower bound
for k-ary classification will have z = 0 which leads to a lower bound of 0 if (1 — p) > ¢. If
(1 — p) < g, then the lower bound does not change from Eq. 9. For the expected bounds, in
the k-ary case, z < 1. We propose two estimates for z. The first estimate considers the number
of classes but not the distribution of the classes, z = 1/(k — 1). The second estimate factors
in the distribution of class labels and is shown in Eq. 11. In this equation, P (y) represents
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the probability that a data point has a label of y, where y € Y. P(y) can be estimated using
the observed frequency of each class.

P)P(y)
e=2 P0 ) (1= P()(1— P(x))

xeY y#xeY
P
—Z(l ;x() 52 POY (1

y#xeY

Intuitively, z represents the product of the probability that the teacher assigns a class label
of x, the probability that y is the true class label, and the probability that the learner selects
the correct class label of y, the result of which is summed over each possible class value and
is normalized by the remaining probabilities given that x is not the class label.

Note that the above analysis assumes that teacher—learner agreement is uniform over all
classes. We can extend this analysis to consider « = P (h1() = x| f1() = y), the probability
that the teacher classifies a data point as x given that it has a true label of y. Similarly, we
consider B = P(h2() = y|h1() = x), the probability that the learner classifies the data point
as y given that the teacher classified it as x. Both of these probabilities can be estimated
without using any labeled data in the learner view. The expected bound is then calculated in
Eq. 12. In this case, we no longer explicitly distinguish between the teacher being right and
wrong. Instead, these cases are handled implicitly by y = x and y # x.

r=Y Py Y ap (12)

yeY xeY

In addition to these upper and lower bound learner accuracy estimates, we can also estimate
average performance. A simple estimation can be performed by averaging upper and lower
bounds, which avoids calculating class distributions and conditional probabilities. This also
avoids making explicit assumptions about the probability of the teacher and learner agreeing.
Interestingly, when p > g and (1 — p) < g, then the average of the upper and lower bounds
is just q.

Note that the expected accuracy of the learner can be simplified to the underestimate of
r = pq. All of the above bounds provide insight into the expected learner performance
based on characteristics of the teacher, without requiring labeled data in the learner view. To
compute these bounds in practice, teacher accuracy can be estimated using its labeled data.
Similarly, teacher—learner agreement can be estimated using unlabeled data in both views.
Later, we empirically compute performance and compare it with these theoretical bounds.

S Experimental evaluation

The goal of PECO is to transfer activity knowledge from one sensor platform’s trained view
to another sensor platform’s untrained view. Here we evaluate whether a new sensor platform
can learn these activity models without having any labeled activity data in its own view. We
observe influence based on the choice of teacher view and consider more than two views
in combination. In addition, we compare theoretical bounds with observed performance.
Finally, we observe the beneficial effects to the teacher from the transfer, which allows
sensor platforms to act as colleagues.

For our experiments, we make use of three activity recognition datasets and the toy dataset.
All of the activity recognition datasets contain data from multiple heterogeneous sensor types
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and all include data from multiple participants. In each experiment, we report results using
tenfold cross-validation averaged over all participants.

The toy dataset has two views. Each view is generated independently of the other view
and data instances from each view with the same class label are randomly paired together as
being the same instance from different views. The views are generated using the Scikit-Learn
framework [74]. For the first view, samples are generated using two normally distributed
clusters (one for each class) with one informative attribute and 1 non-informative attribute.
For the second view, samples are generated using four normally distributed clusters (two per
class) with two informative attributes and one non-informative attribute. Each view generates
100 samples (50 per class).

In the Opportunity dataset [75], 4 participants perform 5 repetitions of the following
scripted activities: groom, relax, make/drink coffee, make/drink sandwich, clean, and exe-
cute a simple-movement drill. Twelve 3-axis wearable accelerometers represent one sensor
platform (view 1), and seven wearable inertial measurement units represent the second plat-
form (view 2). We use the same features as Sagha et al. [76] which consist of raw sensor
values sampled every 500 ms and averaged over a 5-s window.

In the CASAS PUCK dataset [77] (ailab.wsu.edu/casas/ datasets.html), 10 participants
perform 3 repetitions of 6 scripted activities: sweep, take medicine, cook oatmeal, water
plants, wash hands, and clean countertops. Activities are performed in a smart home that is
equipped with infrared motion sensors and magnetic door sensors (view 1). Each participant
wears two 6-axis accelerometers (view 2). Finally, object vibration sensors (view 3) are
attached to the broom, dustpan, duster, pitcher, bowl, measuring cup, glass, fork, watering
can, hand soap dispenser, dish soap dispenser, medicine dispenser, and medicine bottles. For
consistency, we employ the same wearable sensor features as in the Opportunity dataset. For
views 1 and 3, the feature vector consists of the number of activations for each sensor during
the sampling period.

In the CASAS Parkinson’s dataset, 6 participants perform 3 repetitions of the same activ-
ities as in the PUCK dataset. In addition to the ambient sensor view (view 1), wearable
accelerometer view (view 2), and object sensor view (view 3), a new view is introduced
corresponding to Kinect depth cameras (view 4) that were placed in the smart home. We
utilize a Kinect API that processes the video data into the 20 (x, y, z) joint positions found
in the video.

All of the existing and new algorithms described in this paper can partner with virtually
any classifier. We experimented with logistic regression, k-nearest neighbors, support vector
machines, and decision trees. No classifier consistently performed best or significantly out-
performed the others on average. We report all of our results here based on a decision tree
classifier, which performed as well or better than other approaches on average. For complete-
ness, we also report results of the different classifiers on the toy dataset using the bootstrapped
method with ten percent of the labels being bootstrapped.

Figure 5 summarizes the size of each view’s feature space, and Fig. 6 illustrates the sensor
types and locations used in these datasets.

We are ultimately interested in seeing if one sensor platform can successfully transfer
activity knowledge to a new platform. First, we consider the baseline performance of each
sensor view without transfer learning. Figure 7 plots the performance of the sensor views in
decreasing order of recognition performance when the view has all of the available labeled
data for training and testing. Performance varies between the platforms. The varied strengths
of each view will be utilized in later experiments when we analyze effects of the choice of
teacher views on performance. For each experiment, we measure performance as activity
classification accuracy (see Eq. 13). Because the datasets exhibit a skewed class distribution,
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Fig. 5 Feature space sizes for each dataset and view
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for some experiments we also report macro-averaged recall scores (see Eq. 14). In both of
these equations, N is the total number of instances, K is the number of labels, and A is the
confusion matrix where Aij is the number of instances of class i classified as class j.

K
1
Accuracy = ~ 21: Aji (13)
i—
| X K
Avg. Recall = x 21: Aj; X} Ajj (14)
i= j=

5.1 Informed learning with two views

We initially consider scenarios in which two sensor platforms are used. With informed meth-
ods, both platforms have a limited amount of training data and act as colleagues to boost
each other’s performance based on the different perspectives of the data. For each of the
10 cross-validation folds, the dataset D is split into three pieces: a labeled subset, an unla-
beled subset, and a validation subset. The size of the validation subset is always |D|/10. We
then vary the size of the labeled subset to show how each algorithm performs with different
amount of labeled data. To see how the informed multi-view learning algorithms perform
in this scenario, we plot classification accuracy as a function of the fraction of the available
training data that is provided to both views. We evaluate these algorithms on the Opportunity
and PUCK datasets.

In order to provide a basis for comparison, we provide three different baseline approaches.
The first baseline, Oracle, uses an expert (the ground truth labels) to provide the correct labels
for the unlabeled data. The second baseline, None, trains a classifier using only the target’s
labeled subset. The third baseline, Random, randomly assigns an activity label weighted by
the class distribution observed in the labeled subset. For the Opportunity dataset, we specify
(p = 10) examples to label for the Co-Training algorithm and (m = 3) iterations for Co-EM.
For the PUCK dataset, we specify (p = 10) for Co-Training and (m = 10) for Co-EM. We
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Fig. 6 Motion (fop), object (middle), and accelerometer (bottom) sensors in the home

experimented with alternative values for both datasets and algorithms but observed little
variation in the resulting accuracies. Figure 8 plots the resulting accuracies, and Fig. 9 plots
the average recall scores.

As expected, the multi-view algorithms start at the same accuracy as Random but converge
near the same accuracy as Oracle as the amount of labeled data in each view increases. The
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Fig.9 Average recall of informed multi-view approaches for the PUCK (left) and Opportunity (right) datasets
as a function of the fraction of training data that is used, on a log scale

effect of transfer learning can be seen when comparing the Co-Train and Co-EM curves with
the None baseline. The results are mixed (differences between approaches are significant as
determined by a one-way ANOVA, p < 0.05). In the PUCK dataset, only Co-EM outperforms
None, and in the Opportunity dataset None outperforms both approaches. This may be due
to the fact that the two views not only violate the conditional independence assumption but
in the case of the Opportunity dataset the sensors are quite similar and are therefore highly
correlated.

5.2 Uninformed learning with two views

We next repeat the previous experiment using uninformed techniques. This means that the
labeled data are only available to the source view. A second sensor platform is later brought
online (the target view) but has no training data and is therefore completely reliant on trans-
ferred information from the source.

For both the PUCK and Opportunity datasets, we select d for the Manifold Alignment
algorithm to be set to the minimum number of dimensions found in the source and target
views, which therefore maximizes the information that is retained by the dimensionality
reduction step. Figures 10 and 11 show the results. Again, a one-way ANOVA indicates that
the differences between the means of the techniques are significant, p < 0.05.

As shown in these graphs, Manifold Alignment does not perform well, although it does
improve as more data become available in the Opportunity dataset. This is likely due to the
invalid assumption that data from both source and target views can be projected onto a shared
manifold in a lower-dimensional space. This is particularly problematic for the PUCK dataset
because the sensor platforms are very different. In contrast, the teacher—learner method does
clearly improve as the amount of labeled source data increases. In fact, it approaches the
ideal accuracy achieved by the Oracle baseline.

This leads us to the evaluation of our PECO algorithm on the PUCK dataset. In this case,
we divide the original data into four parts: A labeled subset, a bootstrap subset, an unlabeled
subset, and a validation subset. As before, the validation subset size is | D|/10. The labeled
subset is 40% of the remaining data. The bootstrap subset size varies and the unlabeled subset
contains the remaining data. Only the source view (view 1) is trained on the labeled data.
After training, the source view acts like a teacher and bootstraps the target view (view 2)
by labeling the bootstrapped portion of the data. The target view then uses this bootstrapped
data to create an initial model. Now PECO can employ an informed technique like Co-
Training or Co-EM to refine the model. This simulates the situation in which a well-trained
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Fig. 11 Recall of uninformed multi-view approaches for the PUCK (left) and Opportunity (right) datasets as
a function of the fraction of training data used by both views on a log scale

activity recognition algorithm is in place for one sensor platform, and we introduce a second
sensor platform without providing it any labeled data. We train it using the source view and
subsequently allow both views to improve each other’s models.

Figure 12 shows the results of this experiment as a function of the amount of labeled
data in the source view. In this and the remaining experiments, the weighted recall results
are very similar to the accuracy results so these graphs are omitted. As shown here, PECO
outperforms teacher—learner when using Co-EM. The performance in fact converges at a
level close to that of the informed approaches. Unlike the informed approaches in Fig. 8,
however, the PECO method achieved these results without relying on any training data for
the target view. This capability will be valuable when it is coupled with a real-time activity
recognition system like CASAS (Sect. 4.4) and used to smoothly transition between data
sources such as environment sensors, wearable or phone sensors, video data, object sensors,
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Fig. 12 Comparison of PECO to other methods on PUCK data as a function of the amount of labeled source
view data

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

bayes knn reg svm tree

mOracle mPECO-CoEM w PECO-CoTrain Teach

Fig. 13 Comparison of PECO to other methods on the toy dataset with different learning algorithms

or even external information sources such as web pages and social media, without the need
for expert guidance or labeled data in the new view.

We also evaluated the PECO methods on the toy dataset using a variety of different
machine learning algorithms. The same setup as the previous experiment is applied, with the
validation subset size of |D|/10, a labeled subset of 40% of the data, a bootstrapped subset
of 10% of the data, and the remaining data are unlabeled. Figure 13 shows the results with
Naive Bayes, k-nearest neighbors, linear regression, SVM, and a decision tree.

5.3 Comparing teachers

The earlier experiments provide evidence that real-time activity transfer can be effective at
training a new sensor platform without gathering and labeling additional data. However, in
the previous experiments the choice of teacher and learner views was fixed. We are interested
in seeing how performance fluctuates based on the choice of teacher (source). Intuitively, we
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Fig. 14 Classification accuracy as a function of the amount of labeled data for the source view. The target
view is ambient sensors, and the source view is object sensors (fop left), wearable sensors (fop right), and
depth camera sensors (bottom)

anticipate that the performance of the learner view will be influenced by the strength of the
teacher view as well as other factors such as the similarity of the views.

To investigate these issues, we consider the three views offered in the PUCK dataset and
four views offered in the Parkinson’s dataset. We fix the target view to be the ambient sensor
view. We also note that the accuracy of each view on its own is listed in Fig. 8.

Figure 14 plots the accuracy of the ambient sensor target view using each of the other
three sensor platforms as the source view. As before, PECO combined with Co-EM and the
teacher—learner algorithm outperform PECO combined with Co-Training, and all reach the
performance of the Oracle method. There are differences in performance, however, based on
which view acts as the teacher. The depth camera and object views are the highest-performing
teachers. This is consistent with the fact that they were the top two performers when acting
on their own (see Fig. 7). All three views were effective teachers, which is interesting given
the tremendous diversity of their data representations, particularly noting that dense video
data successfully transfer activity knowledge to coarse-granularity smart home sensors.

5.4 Adding more views

We now investigate what happens when we add more than two views to the collegial learning
environment. In this case, the different sensor views “pass their knowledge forward” by
acting as a teacher to the next view in the chain. Alternatively, views with training data can
be combined into an ensemble with PECO-E and the ensemble is used to train a student view.
These approaches can benefit from utilizing the diversity of data representations. However,
introducing extra views may also propagate error down the chain of views.
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Fig. 15 Differences in accuracy when a third view is added (listed in order of adding). Views marked with
asterisks have their own labeled data, and views marked with plus receive labels from the teacher(s). A PECO-
E view ensemble is denoted by (x, y). Results are compared with the two-view case for the wearable target
(left) and the ambient target (others). The first view is the original teacher in the two-view case. The second
view is the extra view being added. The third view is the original learner in the two-view case

To explore these effects, we consider different ways of utilizing multiple views and apply-
ing them to the PUCK dataset. First, we consider the case where two views act together as
teachers for the third target view by both providing labels to data for the target view. Second,
we let one view act as a teacher for the second view and then the second view takes over
the role of teacher to jumpstart the third view. Third, we let PECO-E create an ensemble of
multiple source views and the ensemble acts as a teacher for the target view.

The performance differences between the two-view cases (see Fig. 14) and the three-view
case are plotted in Fig. 15. Positive values indicate that the target view benefitted from the
additional view and negative values indicate the additional view was harmful. We note that
the teacher—learner algorithm is largely unaffected by the additional views unless they are
combined into an ensemble classifier. In contrast, PECO combined with Co-Training and
Co-EM does experience a noticeable negative or positive effect, depending on the order in
which the views are applied. In particular, whenever the view containing wearable sensors
(the lowest-accuracy view according to Fig. 7) is added as a teacher, the result lowers the
accuracy for the target view (ambient sensors). When the object sensors (the highest-accuracy
view) are added, the accuracy is increased.

These results shed some light on the multi-view approaches. PECO/Co-Training treats
all views equally. This makes the performance more invariant to view order but also limits
accuracy by not giving preference to stronger views. The teacher—learner algorithm is highly
dependent on the selection of a good teacher and does not utilize extra views unless they are
combined in an ensemble. PECO/Co-EM falls somewhere in the middle, although it too is
affected by view order. We observe that ordering views by decreasing accuracy yields the
best results. Furthermore, combining source views in an ensemble can mitigate the adverse
effects of a poor view order if the relative performances are unknown.

One interesting feature of PECO is that in addition to jump-starting activity recognition
on a new sensor platform, it can also improve activity recognition for the source (teacher)
platform. This effect is highlighted in Fig. 16 by plotting the recognition accuracy of the
source view instead of the target views, as was done in earlier experiments. This process
demonstrates the transition from transfer learning to collegial learning between heteroge-
neous sensor platforms.
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Fig. 16 Source (teacher) view accuracy as a function of the amount of data for source = ambient sensors and
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5.5 Accuracy

In our final analysis, we validate our theoretical accuracy bounds based on empirical perfor-
mance. For the expected bounds, we consider the z = 1/(k — 1) bound proposed in Eq. 10,
the z-priors bound in Eq. 11, the conditional probability bound in Eq. 12, the average of
the upper and lower bounds, and the underestimated expected bound of p x g. We evaluate
these bounds using tenfold cross-validation on the PUCK data. The values used for teacher
accuracy and level of agreement are based on observed performance for the validation set.

Figure 17 shows the results for each teacher—learner view combination. The theoretical
upper and lower bounds bound the observed accuracies as well. The simplest estimation p x g
of the expected accuracy is the least accurate. As expected, including the (1 — p)(1 — ¢)z
term improves this estimate. The conditional expected bounds provide a closer estimate
to the observed accuracy but still underestimate the actual learner accuracy. In addition to
providing the simplest estimate, the average of the upper and lower bounds also provides the
most accurate estimate of learner accuracy in practice.

6 Conclusion

In this paper, we introduce PECO, a technique to transfer activity knowledge between hetero-
geneous sensor platforms. From our experiments, we observe that we can reduce or eliminate
the need to provide expert-labeled data for each new sensor view. This can significantly lower
the barrier to deploying activity learning systems with new types of sensors and information
sources.

In addition, we observe that transferring activity knowledge from source to target views
with PECO can actually boost the performance of the source view as well. This is useful in
situations where the new sensor platform may have more sensitive or denser information than
the previous platforms. For example, a set of smart home sensors may transfer knowledge to
a data-rich video platform such as the Kinect. In these cases, the target view, or student, is
able to construct a more detailed model that benefits the teacher as well and transforms the
relationship to that of colleagues.

We have successfully integrated PECO into the CASAS smart home system, which allows
multi-view learning to operate in real time as diverse sensor platforms are introduced. In the
future, we also want to consider integrating external information sources as well, such as
web information, social media, or human guidance. By including a greater number and more
diverse sources of information, we contribute to the goal of transforming single activity-aware
environments into personalized ecosystems.
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